Вопрос задан 11.06.2020 в 20:07. Предмет Алгебра. Спрашивает Вознюк Богдан.

Решить логарифмическое уравнение 1) log0.2(3x^2-3x+1)=0 2) log7(2x-5)>1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сорокин Тимур.
1
log(0,2)(3x²-3x+1)=0
ОДЗ
3x²-3x+1>0
D=(-3)²-4*3*1=9-12=--<0⇒при любом х выражение стоящее под знаком логарифма больше 0
x∈(-∞;∞)
3x²-3x+1=(0,2)^0
3x²-3x+1=1
3x²-3x=0
3x(x-1)=0
x=0
x-1=0⇒x=1
Ответ х=0,х=1
2
log(4)(2x-5)>1
{2x-5>0⇒2x>5⇒x>5:2⇒x>2,5
{2x-5>7⇒2x>7+5⇒2x>12⇒x>12:2⇒x>6
по правилу больше большего выбираем решение
x∈(6;∞)

0.0
0 оценок
0 оценок
Оцени!
Оцени!
  • Комментарии
  • Отметить нарушение
Войти чтобы добавить комментарий

Не тот ответ, который тебе нужен?

Не тот ответ, который тебе нужен?

Самые новые вопросы

0 0
Спроси у Chat GPT бесплатно без регистрации!

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Предметы
Задать вопрос