Вопрос задан 18.05.2020 в 00:54. Предмет Алгебра. Спрашивает Погорелов Владимир.

При одновременной работе двух насосов разной мощности бассейн наполняется водой за 8 часов. после

ремонта насосов производительность первого из них увеличилась в 1,2 раза, а второго - в 1,6 раза, и при одновременной работе обоих насосов бассейн стал наполняться за 6 часов. За сколько минут наполняется бассейн при работе только первого насоса после ремонта?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Быков Виктор.

Пусть объём бассейна равен 1, тогда время его заполнения до ремонта первым насосом – x, а вторым – y часов. Следовательно, 1/x - производительность первого насоса до ремонта, а 1/y -  производительность второго насоса до ремонта. Зная, что бассейн до ремонта насосов заполняется за 8 часов, то составим первое уравнение: 8(1/x+1/y)=1, т.е.   8/x+8/y=1.

1,2(1/x) - производительность первого насоса до ремонта, а 1,6(1/y) - производительность второго насоса после ремонта. Зная, что бассейн после ремонта насосов заполняется за 6 часов, то составим второе уравнение: 6(12/x+16/y)=1, т.е.   7,2/x+9,6/y=1.

Решив совместно эти два  уравнения , получаем : x=12, y=24.

Из найденных значений для x и y вычислим производительность первого насоса после ремонта: 1,2(1/x)=(1,2*1)/12=0,1

По формуле  t=A/P найдём время наполнения бассейна при работе только первого насоса после ремонта: 1/0,1=10 ч.

Ответ: 10 ч.

0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос