Вопрос задан 04.05.2020 в 22:18. Предмет Алгебра. Спрашивает Подшивалова Лидия.

На окружности отмечено 8 различных точек. Сколько различных треугольников с вершинами в данных

точках можно построить?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Xubutia Irakli.

Решение: Выберем две точки, проведем одну сторону, всего треугольников можно построить 6 (две точки использовано, третья может одной из 6 оставшихся),

 

всего можно провести различных отрезков 8*7\2=28 отрезков соединв две точки (8 точек, каждую из них можно соединить с одной из 7 точек, при этом каждый отрезок считается два раза, так у него два конца - вершины)

Тогда всех треугольников 28*6\3=56 треугольников (не хватает третьей вершины, ее можно выбрать из одной из оставшихся 6 вершин, делим на 3 потому что каждый треугльник посчитали по три раза по количевству его вершин)

Итого овтет 56 треугольников

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос