Вопрос задан 20.04.2020 в 14:43. Предмет Алгебра. Спрашивает Леонова Вероника.

Доказать что число 107*109*111*113+16 можно представить в виде квадрата натурального числа.

выполните преобразование в общем виде, представив вырожение как (n-3)(n-1)(n+1)(n+3)+16
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петров Игорь.
(n-3)(n-1)(n+1)(n+3)+16=(n²-9)(n²-1)+16=n^4-n²-9n²+9+16=n^4-10n²+25=(n²-5)²
107*109*111*113+16 =(110-3)(110-1)(110+1)(110+3)+16=(110²-5)²=(12100-5)²=12095²

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос