Вопрос задан 01.06.2018 в 06:01. Предмет Алгебра. Спрашивает Калашников Захар.

Решите уравнение: cos2x*cos4x=-1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тихонов Денис.

cos(2x)*cos(2*2x)=-1
cos(2x)*(2cos^{2}(2x)-1)=-1
2cos^{3}(2x)-cos(2x)+1=0

Заменаcos(2x)=t, t∈[-1;1]
2t^{3}-t+1=0
2t^{3}-t+1=(t+1)(2t^{2}-2t+1)=0
t=-1

Вернемся к замене:
cos(2x)=-1
2x= \pi +2 \pi k, k∈Z
x=\frac{ \pi }{2}+ \pi k, k∈Z

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос