
Вопрос задан 01.04.2020 в 23:03.
Предмет Алгебра.
Спрашивает Михайлова Инесса.
Одна сторона треугольника равна 12 м, а другая равна 16 м. Какой может быть длина третьей стороны
при условии, что периметр треугольника больше 48 м?

Ответы на вопрос

Отвечает Носкова Анастасия.
Обозначим стороны треугольника а,b,с.
а = 16 м
b = 12 м
Р = а + b + c > 48
Подставим значения в уравнение периметра:
16 + 12 + c > 48
28 + c > 48
c> 48 - 28
c > 20 (м)
Треугольник существует тогда и только тогда, когда сумма двух любых его сторон больше третьей стороны . Следовательно:
16 + 12 > c
28 > c
c < 28 (м)
Вывод :
20 м < с < 28 м ⇒ c ∈ (20 м ; 28 м)
а = 16 м
b = 12 м
Р = а + b + c > 48
Подставим значения в уравнение периметра:
16 + 12 + c > 48
28 + c > 48
c> 48 - 28
c > 20 (м)
Треугольник существует тогда и только тогда, когда сумма двух любых его сторон больше третьей стороны . Следовательно:
16 + 12 > c
28 > c
c < 28 (м)
Вывод :
20 м < с < 28 м ⇒ c ∈ (20 м ; 28 м)



Отвечает Чернова Александра.
48-16-12=20
Ответ 20 м
Ответ 20 м


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili