
Вопрос задан 30.05.2018 в 23:12.
Предмет Алгебра.
Спрашивает Ефимкина Вика.
Очень прошу решить как можно скорее!! log(5x-4x^2) (4^-x) > 0Ответ (0; 1\4) U ( 1; 5\4)


Ответы на вопрос

Отвечает Новожонов Никита.
log(5x-4x^2) (4^-x) > 0
log(5x-4x^2) (4^-x) > log(5x-4x^2) 1
данное неравенство равносильно совокупности 2х систем:
1) 5x-4x^2 > 1
4^-x > 1
2) 0 < 5x-4x^2 < 1
4^-x < 1
1) а) 5x-4x^2 -1 > 0
4x^2 - 5x + 1 < 0
(x - 1)(x - 0,25) < 0
0,25 < x < 1
б) 4^-x > 1
4^-x > 4^0
-x > 0
x < 0
Т.е. 0,25 < x < 1 и х < 0
нет решений
2) а)
0 < 5x-4x^2 < 1
5x-4x^2 > 0
x(5 - 4x) > 0
0 < x < 5/4
5x-4x^2 < 1
5x-4x^2 - 1 < 0
2x^2 - 5x + 1 > 0
(x - 1)(x - 0,25) > 0
x < 0,25 x >1
б)
4^-x < 1
4^-x < 4^0
-х < 0
x > 0
Т.о. 0 < x < 5/4
x < 0,25 x >1
x > 0
Получим, (0; 0,25) и (1;1,25)


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili