
Вопрос задан 17.02.2020 в 06:19.
Предмет Алгебра.
Спрашивает Новикова Анастасия.
Пусть x1 и x2 корни уравнения x^2+7x -2=0. Не решая уравнения ,найти x1/x2 + x2/x1.


Ответы на вопрос

Отвечает Гончарук Денис.
По теореме Виета: x1+x2=-7, x1•x2=-2, найдём
x1/x2 + x2/x1 = [(x1)^2 + (x2)^2]/[x1•x2] =
=[ (x1)^2 + 2x1•x2 + (x2)^2 - 2x1•x2]/[x1•x2]=
=[ (x1+x2)^2 - 2x1•x2 ] / [x1•x2]=
=[ (-7)^2 - 2 (-2) ] / [-2] = (49+4)/(-2)=-53/2=-26,5
x1/x2 + x2/x1 = [(x1)^2 + (x2)^2]/[x1•x2] =
=[ (x1)^2 + 2x1•x2 + (x2)^2 - 2x1•x2]/[x1•x2]=
=[ (x1+x2)^2 - 2x1•x2 ] / [x1•x2]=
=[ (-7)^2 - 2 (-2) ] / [-2] = (49+4)/(-2)=-53/2=-26,5


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili