
Вопрос задан 28.01.2020 в 00:30.
Предмет Алгебра.
Спрашивает Петракович Арсений.
Знайдіть точки екстремуму та екстремуми функції f(x)=x^2/3-x


Ответы на вопрос

Отвечает Сангажапова Настя.
F(x) = x²/(3 - x)
Производная функции:
f'(x) = (2x · (3 - x) - (-1) · x²)/(3 - x)²
f'(x) = (6x - 2x² + x²)/(3 - x)²
f'(x) = (6x - x²)/(3 - x)²
f'(x) = x(6 - x)/(3 - x)²
Приравняем производную нулю с условием, что х≠3
Получим: х = 0 и х = 6
Поскольку функция у = 6x - x² квадратичная, то её график - парабола веточками вниз пересекает ось х в точках х1 = 0; и х2 = 6
В точке х1 = 0 производная меняет знак с - на +, следовательно, это точка минимума, а в точке х2 = 6 производная меняет знак с + на -. Следовательно, это точка максимума.
Найдём локальные минимум и максимум функции f(x) = x²/(3 - x)
При х1 = 0 f(x) min = 0
При х2 = 6 f(x) max = 12
Производная функции:
f'(x) = (2x · (3 - x) - (-1) · x²)/(3 - x)²
f'(x) = (6x - 2x² + x²)/(3 - x)²
f'(x) = (6x - x²)/(3 - x)²
f'(x) = x(6 - x)/(3 - x)²
Приравняем производную нулю с условием, что х≠3
Получим: х = 0 и х = 6
Поскольку функция у = 6x - x² квадратичная, то её график - парабола веточками вниз пересекает ось х в точках х1 = 0; и х2 = 6
В точке х1 = 0 производная меняет знак с - на +, следовательно, это точка минимума, а в точке х2 = 6 производная меняет знак с + на -. Следовательно, это точка максимума.
Найдём локальные минимум и максимум функции f(x) = x²/(3 - x)
При х1 = 0 f(x) min = 0
При х2 = 6 f(x) max = 12


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili