Вопрос задан 17.01.2020 в 02:33. Предмет Алгебра. Спрашивает Резник Саша.

Моторная лодка прошла против течения реки 80 км и вернулась в пункт отправления, затратив на

обратный путь на 2 ч 40 минут меньше. Найдите скорость течения реки, если собственная скорость лодки равна 16 км/ч
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тукташева Арина.
Ну вот, ловите, вроде бы так, квадратное уравнение, думаю понимаете как решил
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a motorboat traveled against the current of a river for 80 km and then returned to the starting point, spending 2 hours and 40 minutes less on the return journey. We need to find the speed of the river's current, given that the boat's own speed is 16 km/h.

Solution

Let's assume the speed of the river's current is x km/h.

When the boat is traveling against the current, its effective speed is reduced by the speed of the current. So, the boat's speed against the current is (16 - x) km/h.

When the boat is traveling with the current, its effective speed is increased by the speed of the current. So, the boat's speed with the current is (16 + x) km/h.

We are given that the boat took 2 hours and 40 minutes less time on the return journey. This means that the time taken for the return journey is 2 hours and 40 minutes (or 2.67 hours) less than the time taken for the forward journey.

Let's calculate the time taken for the forward journey: Time taken for forward journey = Distance / Speed = 80 km / (16 - x) km/h

Let's calculate the time taken for the return journey: Time taken for return journey = Distance / Speed = 80 km / (16 + x) km/h

According to the given information, the time taken for the return journey is 2 hours and 40 minutes less than the time taken for the forward journey: Time taken for forward journey - Time taken for return journey = 2.67 hours

Now, we can set up the equation and solve for the speed of the river's current.

Calculation

Time taken for forward journey - Time taken for return journey = 2.67 hours

80 / (16 - x) - 80 / (16 + x) = 2.67

To solve this equation, we can multiply both sides by (16 - x)(16 + x) to eliminate the denominators:

80(16 + x) - 80(16 - x) = 2.67(16 - x)(16 + x)

Simplifying the equation:

1280 + 80x - 1280 + 80x = 2.67(256 - x^2)

160x = 2.67(256 - x^2)

160x = 682.72 - 2.67x^2

2.67x^2 + 160x - 682.72 = 0

Now, we can solve this quadratic equation to find the value of x.

Using the quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a)

where a = 2.67, b = 160, and c = -682.72

Substituting the values into the formula:

x = (-160 ± √(160^2 - 4 * 2.67 * -682.72)) / (2 * 2.67)

Simplifying the equation:

x = (-160 ± √(25600 + 7270.08)) / 5.34

x = (-160 ± √(32870.08)) / 5.34

x = (-160 ± 181.25) / 5.34

Now, we can calculate the two possible values of x:

x1 = (-160 + 181.25) / 5.34 = 3.75 km/h

x2 = (-160 - 181.25) / 5.34 = -68.75 km/h

Since the speed of the river's current cannot be negative, the speed of the river's current is 3.75 km/h.

Answer

The speed of the river's current is 3.75 km/h.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос