
Моторная лодка прошла против течения реки 80 км и вернулась в пункт отправления, затратив на
обратный путь на 2 ч 40 минут меньше. Найдите скорость течения реки, если собственная скорость лодки равна 16 км/ч

Ответы на вопрос




Problem Analysis
We are given that a motorboat traveled against the current of a river for 80 km and then returned to the starting point, spending 2 hours and 40 minutes less on the return journey. We need to find the speed of the river's current, given that the boat's own speed is 16 km/h.Solution
Let's assume the speed of the river's current is x km/h.When the boat is traveling against the current, its effective speed is reduced by the speed of the current. So, the boat's speed against the current is (16 - x) km/h.
When the boat is traveling with the current, its effective speed is increased by the speed of the current. So, the boat's speed with the current is (16 + x) km/h.
We are given that the boat took 2 hours and 40 minutes less time on the return journey. This means that the time taken for the return journey is 2 hours and 40 minutes (or 2.67 hours) less than the time taken for the forward journey.
Let's calculate the time taken for the forward journey: Time taken for forward journey = Distance / Speed = 80 km / (16 - x) km/h
Let's calculate the time taken for the return journey: Time taken for return journey = Distance / Speed = 80 km / (16 + x) km/h
According to the given information, the time taken for the return journey is 2 hours and 40 minutes less than the time taken for the forward journey: Time taken for forward journey - Time taken for return journey = 2.67 hours
Now, we can set up the equation and solve for the speed of the river's current.
Calculation
Time taken for forward journey - Time taken for return journey = 2.67 hours80 / (16 - x) - 80 / (16 + x) = 2.67
To solve this equation, we can multiply both sides by (16 - x)(16 + x) to eliminate the denominators:
80(16 + x) - 80(16 - x) = 2.67(16 - x)(16 + x)
Simplifying the equation:
1280 + 80x - 1280 + 80x = 2.67(256 - x^2)
160x = 2.67(256 - x^2)
160x = 682.72 - 2.67x^2
2.67x^2 + 160x - 682.72 = 0
Now, we can solve this quadratic equation to find the value of x.
Using the quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a)
where a = 2.67, b = 160, and c = -682.72
Substituting the values into the formula:
x = (-160 ± √(160^2 - 4 * 2.67 * -682.72)) / (2 * 2.67)
Simplifying the equation:
x = (-160 ± √(25600 + 7270.08)) / 5.34
x = (-160 ± √(32870.08)) / 5.34
x = (-160 ± 181.25) / 5.34
Now, we can calculate the two possible values of x:
x1 = (-160 + 181.25) / 5.34 = 3.75 km/h
x2 = (-160 - 181.25) / 5.34 = -68.75 km/h
Since the speed of the river's current cannot be negative, the speed of the river's current is 3.75 km/h.
Answer
The speed of the river's current is 3.75 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili