ПОмогите решить 2 задания. разложите на множители: а)12а^2b-27b^3; b)-40x^3-120x^2y-90xy^2;
в)2a^4-16ab^3; г)([^3+8)-(3x+6). Решите уравнение x^3-x^2-25x+25=0 помогите умоля .зарание спасибоОтветы на вопрос
1. а) 3b (4a^2 - 9b^2) = 3b (2a - 3b) (2a +3b)
b) -10x (4x^2 + 12xy + 9y^2) = -10x (2x + 3y)^2
c) 2a (a^3 - 8b^3) = 2a (a - 2b) (a^2 + 2ab + 4b^2)
d) (x + 2) (x^2 - 2x + 4) - 3 (x + 2) = (x + 2) (x^2 - 2x + 4 - 3) = (x + 2) (x^2 - 2x + 1)
2. (x^3 - x^2) - (25x - 25) = 0
x^2 (x - 1) - 25 (x - 1) = 0
(x - 1) (x^2 - 25) = 0
(x - 1) (x - 5) (x + 5) = 0
произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой приэтом не теряет смысла; тогда:
х - 1 = 0 или х - 5 = 0 или х + 5 = 0
х = 1 х = 5 х =-5
Task 1: Factorize 12a^2b - 27b^3
To factorize the expression 12a^2b - 27b^3, we can first factor out the greatest common factor (GCF) of the terms. In this case, the GCF is 3b:
12a^2b - 27b^3 = 3b(4a^2 - 9b^2)
Next, we can apply the difference of squares formula to factor the expression inside the parentheses:
4a^2 - 9b^2 = (2a)^2 - (3b)^2 = (2a + 3b)(2a - 3b)
Therefore, the fully factorized form of 12a^2b - 27b^3 is:
3b(2a + 3b)(2a - 3b)
Task 2: Factorize -40x^3 - 120x^2y - 90xy^2
To factorize the expression -40x^3 - 120x^2y - 90xy^2, we can first factor out the greatest common factor (GCF) of the terms. In this case, the GCF is -10x:
-40x^3 - 120x^2y - 90xy^2 = -10x(4x^2 + 12xy + 9y^2)
Next, we can apply the perfect square trinomial formula to factor the expression inside the parentheses:
4x^2 + 12xy + 9y^2 = (2x + 3y)^2
Therefore, the fully factorized form of -40x^3 - 120x^2y - 90xy^2 is:
-10x(2x + 3y)^2
Task 3: Factorize 2a^4 - 16ab^3
To factorize the expression 2a^4 - 16ab^3, we can first factor out the greatest common factor (GCF) of the terms. In this case, the GCF is 2a:
2a^4 - 16ab^3 = 2a(a^3 - 8b^3)
Next, we can apply the difference of cubes formula to factor the expression inside the parentheses:
a^3 - 8b^3 = (a - 2b)(a^2 + 2ab + 4b^2)
Therefore, the fully factorized form of 2a^4 - 16ab^3 is:
2a(a - 2b)(a^2 + 2ab + 4b^2)
Task 4: Solve the equation x^3 - x^2 - 25x + 25 = 0
To solve the equation x^3 - x^2 - 25x + 25 = 0, we can use various methods such as factoring, the quadratic formula, or numerical methods. Let's try factoring first.
By observing the equation, we can see that x = 1 is a root of the equation. This means that (x - 1) is a factor of the equation. We can use polynomial long division or synthetic division to divide the equation by (x - 1):
``` x^2 - 25 ------------- x - 1 | x^3 - x^2 - 25x + 25 - (x^3 - x^2) ------------- - 25x + 25 - (- 25x + 25) ------------- 0 ```
The result of the division is x^2 - 25. Now we have factored the equation as (x - 1)(x^2 - 25) = 0.
Next, we can factor the quadratic expression x^2 - 25 using the difference of squares formula:
x^2 - 25 = (x - 5)(x + 5)
Therefore, the fully factored form of the equation x^3 - x^2 - 25x + 25 = 0 is:
(x - 1)(x - 5)(x + 5) = 0
To find the solutions, we set each factor equal to zero:
x - 1 = 0 -> x = 1 x - 5 = 0 -> x = 5 x + 5 = 0 -> x = -5
Therefore, the solutions to the equation x^3 - x^2 - 25x + 25 = 0 are:
x = 1, x = 5, x = -5
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
