
Вопрос задан 14.07.2019 в 11:52.
Предмет Алгебра.
Спрашивает Решетникова Диана.
ПОМОГИТЕ УМОЛЯЮ Докажите, что n^3-n кратно 3 при всех натуральных n


Ответы на вопрос

Отвечает Кумисбекова Диана.
Решение:
Вынесем n за скобки. Получим:

А выражение в скобках раскроем как разность квадратов:

И теперь возможны три случая:
1) Пусть n = 3k, где k - целое число (иначе говоря, делится на 3). Тогда,

2) Пусть n = 3k + 1, где k - целое число (делится на 3 с остатком 1)
Тогда,
. И это число делится на 3.
3) Пусть n = 3k + 2 (с теми же условиями, что и выше, только число делится на 3 с остатком 2).
Тогда,
. И это число тоже делится на 3.
Таким образом, и выражение n^3-n тоже делится на 3 без остатка.
Вынесем n за скобки. Получим:
А выражение в скобках раскроем как разность квадратов:
И теперь возможны три случая:
1) Пусть n = 3k, где k - целое число (иначе говоря, делится на 3). Тогда,
2) Пусть n = 3k + 1, где k - целое число (делится на 3 с остатком 1)
Тогда,
3) Пусть n = 3k + 2 (с теми же условиями, что и выше, только число делится на 3 с остатком 2).
Тогда,
Таким образом, и выражение n^3-n тоже делится на 3 без остатка.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili