
Вопрос задан 05.07.2019 в 01:24.
Предмет Алгебра.
Спрашивает Кондратьева Елизавета.
Помогите решить!! в школе 30 классов и 1000 учащихся.Докажите, что есть класс, в котором не менее
34 учасников

Ответы на вопрос

Отвечает Новожонов Никита.
Можно так: следуем от обратного
предположим, что в этой школе нет класса, где было бы учеников больше 33-х.
Тогда предположим, что во всех классах по 33 ученика - это предел допустимого в этом случае порога.
итого получается 990 учеников. Но их у нас 1000. т.е. ещё десять нам так или иначе надо "раскидать" по классам. Следовательно, у нас появится, как минимум, один класс, где учеников будет больше 33-х.
предположим, что в этой школе нет класса, где было бы учеников больше 33-х.
Тогда предположим, что во всех классах по 33 ученика - это предел допустимого в этом случае порога.
итого получается 990 учеников. Но их у нас 1000. т.е. ещё десять нам так или иначе надо "раскидать" по классам. Следовательно, у нас появится, как минимум, один класс, где учеников будет больше 33-х.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili