
Вопрос задан 28.06.2019 в 18:24.
Предмет Алгебра.
Спрашивает Романова Полина.
СРОЧНО!! ПОЖАЛУЙСТА~ РЕШИТЕ ХОТЬ ЧТО-ТО 1) решите биквадратное уравнение. х^4+16х^2=0. 2) решите
неравенство методом интервалов. (х-2)(9+х)(12+х)х<0. 3)Найдите область определения функции. У=9\√8х-2х^2

Ответы на вопрос

Отвечает Хисамова Алина.
1) x^2(x^2+16)=0 x=0 или x^2+16=0 - решений нет Ответ: x=0 2)нули : x=2, x=-9, x=-12, x=0. На числовой прямой отмечаем найденные значения x, они разобьют прямую на интервалы (- бесконечность; -12), (-12,-9),(-9,0),(0,2),(2, + бесконечность). Определяем знак левой части неравенства на каждом интервале, выбирая из интервала любое число, например, возьмём -20 из первого интервала (-20-2)(9-20)(12-20)(-20)>0 и тд. Ответ:(-12,-9), (0,2) 3)не понятна запись знаменателя, что является подкоренным выражением? Если весь знаменатель это корень квадратный из 8x-2x^2, то область определения состоит из всех значений x, удовлетворяющих условию 8x-2x^2>0, x^2-4x<0, x(x-4)<0, (- бесконечности, 0) и (4, + бесконечности) - искомая область определения


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili