Вопрос задан 19.06.2019 в 05:51. Предмет Алгебра. Спрашивает Диордиев Матвей.

Решите логарифмическое неравенство: LOG1/6 (10-x) + LOG1/6 (x-3) ≥ -1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сорокин Игорь.
ОДЗ
{10-x>0⇒x<10
{x-3>0⇒x>3
x∈(3;10)
log(1/6)[(10-x)(x_3)]≥-1
Основание меньше 1,знак меняется
(10-x)(x-3)≤6
10x-30-x²+3x-6≤0
x²-13x+36≥0
x1+x2=13 U x1*x2=36
x1=4 U x2=9
x≤4 U x≥9
x∈(3;4] U [9;10)
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос