Вопрос задан 19.06.2019 в 05:51.
Предмет Алгебра.
Спрашивает Диордиев Матвей.
Решите логарифмическое неравенство: LOG1/6 (10-x) + LOG1/6 (x-3) ≥ -1
Ответы на вопрос
        Отвечает Сорокин Игорь.
                
     ОДЗ
{10-x>0⇒x<10
{x-3>0⇒x>3
x∈(3;10)
log(1/6)[(10-x)(x_3)]≥-1
Основание меньше 1,знак меняется
(10-x)(x-3)≤6
10x-30-x²+3x-6≤0
x²-13x+36≥0
x1+x2=13 U x1*x2=36
x1=4 U x2=9
x≤4 U x≥9
x∈(3;4] U [9;10)
                                        {10-x>0⇒x<10
{x-3>0⇒x>3
x∈(3;10)
log(1/6)[(10-x)(x_3)]≥-1
Основание меньше 1,знак меняется
(10-x)(x-3)≤6
10x-30-x²+3x-6≤0
x²-13x+36≥0
x1+x2=13 U x1*x2=36
x1=4 U x2=9
x≤4 U x≥9
x∈(3;4] U [9;10)
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			