
Вопрос задан 11.06.2019 в 22:28.
Предмет Алгебра.
Спрашивает Казаченко София.
В прямоугольнике АВСD со сторонами АВ=2, ВС=5 случайно выбирают точку. найти вероятность того что
она расположена ближе к вершине А, чем к точке пересечения диагоналей. С решением плз

Ответы на вопрос

Отвечает Сартай Сымбат.
Проведем серединный перпендикуляр к АО. Из прямоугольного треугольника ACD по теореме Пифагора
Треугольники AKM и ACD подобны по двум углам (∠AKM = ∠ADC и ∠А - общий).
AM/AK = AC/AD ⇒ AM=29/20
Треугольники AKM и NKC подобны по двум углам (∠AKM=∠CKN и ∠KAM = ∠NCK как накрест лежащие при BC || AD и секущей AC).
AM/AK = NC/CK = (BC-BN)/(AC-AK) ⇒ BN = 13/20
Площадь четырехугольника ABNM:
Площадь прямоугольника ABCD:
Искомая вероятность по геометрической формуле вероятности:
Ответ: 0,21.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili