 
Вопрос задан 11.06.2019 в 18:20.
Предмет Алгебра.
Спрашивает Урывская Ярослава.
Доказать что при любом целом m число m*(m*m+5) делится нацело на 6. Пожалуйста распешите решение.
 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Сидоров Тимофей.
                
     M и (m^2 + 5) - разной четности, поэтому одно из них делится на 2, тогда и все произведение делится на 2.
Делимость на 3: если m делится на 3, то все произведение делится на 3.
Иначе m^2 дает остаток 1 при делении на 3, тогда (m^2 + 5) делится на 3, и всё произведение делится на 3.
Число делится на 2 и 3 -> делится на 6.
                                        Делимость на 3: если m делится на 3, то все произведение делится на 3.
Иначе m^2 дает остаток 1 при делении на 3, тогда (m^2 + 5) делится на 3, и всё произведение делится на 3.
Число делится на 2 и 3 -> делится на 6.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			