
Вопрос задан 18.05.2018 в 10:31.
Предмет Алгебра.
Спрашивает Мамаев Макс.
Найдите точку минимума функции y=(2x^2-28x+2)*e^x-29


Ответы на вопрос

Отвечает Червяковский Ваня.
Y`=(4x-28)*e^x-29+(2x²-28x+2)*e^x-29=e^x-29(4x-28+2x²-28x+2)=e^x-29*(2x²-24x-26)=0
2(x²-12x-13)=0
x1+x2=12 U x1*x2=-13⇒x1=-1 U x2=13
+ _ +
--------------------------------------------------------
возр -1 убыв 13 возр
max min
y(13)=(2*169-28*13+2)*e^-16=-24/e^16 (13;-24/e^16)


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili