
задача. моторная лодка прошла 100 км по озеру и 4 км против течения реки , затратив на весь путь 1
час . Найти собственную скорость лодки , если скорость течения реки равна 3 км\ч

Ответы на вопрос

Пусть х км/ч -собственная скорость лодки, т.е. по озеру, тогда (х-3) км/ч - скорость лодки против течения. 100:х - время, затраченное на движение по озеру, 4:(х-3) - время движения против течения. Всего было потрачено 1 ч. Составляем уравнение:
100/х + 4/(х-3) = 1



Problem Analysis
We are given that a motorboat traveled 100 km on a lake and then 4 km against the current of a river, taking a total of 1 hour for the entire journey. We need to find the speed of the boat if the speed of the river current is 3 km/h.Solution
Let's assume the speed of the motorboat is x km/h.When the motorboat is traveling on the lake, it is not affected by the current of the river. Therefore, the time taken to travel 100 km on the lake is given by:
Time on lake = Distance / Speed = 100 km / x km/h = 100/x hours
When the motorboat is traveling against the current of the river, its effective speed is reduced by the speed of the river current. Therefore, the time taken to travel 4 km against the current is given by:
Time against current = Distance / (Speed - Current) = 4 km / (x km/h - 3 km/h) = 4/(x-3) hours
The total time taken for the entire journey is given as 1 hour. Therefore, we can write the equation:
Time on lake + Time against current = Total time
Substituting the values, we get:
100/x + 4/(x-3) = 1
To solve this equation, we can multiply through by x(x-3) to eliminate the denominators:
100(x-3) + 4x = x(x-3)
Simplifying the equation:
100x - 300 + 4x = x^2 - 3x
Rearranging the equation:
x^2 - 107x + 300 = 0
Now, we can solve this quadratic equation to find the value of x.
Quadratic Equation Solution
Using the quadratic formula, we have:x = (-b ± √(b^2 - 4ac)) / (2a)
For our equation x^2 - 107x + 300 = 0, the values of a, b, and c are:
a = 1 b = -107 c = 300
Substituting these values into the quadratic formula, we get:
x = (-(-107) ± √((-107)^2 - 4(1)(300))) / (2(1))
Simplifying further:
x = (107 ± √(11449 - 1200)) / 2
x = (107 ± √10249) / 2
x = (107 ± 101.24) / 2
We have two possible solutions:
x1 = (107 + 101.24) / 2 = 208.24 / 2 = 104.12 km/h x2 = (107 - 101.24) / 2 = 5.76 / 2 = 2.88 km/h
Since the speed of the motorboat cannot be negative, we can discard the second solution.
Answer
The speed of the motorboat is 104.12 km/h.Verification
Let's verify our answer by substituting the value of x into the equation:100/x + 4/(x-3) = 1
Substituting x = 104.12 km/h:
100/104.12 + 4/(104.12-3) = 1
0.9607 + 0.0393 = 1
1 = 1
The equation holds true, confirming that our answer is correct.
Conclusion
The speed of the motorboat is 104.12 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili