Вопрос задан 10.05.2019 в 06:36. Предмет Алгебра. Спрашивает Скульский Матвей.

+5 =6x²+y²=13Решить систему уравнений

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Новикова Катя.
\frac{y+x}{y-x}=a\\\\
a+\frac{5}{a}=6\\\\
a^2-6a+5=0\\\\
D=36-4*1*5=4^2\\\\
a=\frac{6+4}{2}=5\\\\
a=\frac{6-4}{2}=1\\\\
1)x=0\\
y=-/+\sqrt{13}\\\\
2)6x=4y\\
x=\frac{2y}{3}\\
\frac{4y^2}{9}+y^2=13\\
 y=+-3\\
 x=2;-2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Дана система уравнений:

1) 5 = 6x² + y² 2) x + y = 3

Для решения этой системы можно воспользоваться методом подстановки или методом исключения. В данном случае удобнее использовать метод исключения.

Из второго уравнения выразим одну из переменных, например, x: x = 3 - y

Подставим это выражение в первое уравнение: 5 = 6(3 - y)² + y²

Раскроем скобки: 5 = 6(9 - 6y + y²) + y² 5 = 54 - 36y + 6y² + y² Перенесём все слагаемые в левую часть уравнения: 0 = 7y² - 36y + 49

Теперь можем решить получившееся квадратное уравнение. Для этого можно воспользоваться формулой дискриминанта: D = b² - 4ac

В нашем случае: a = 7, b = -36, c = 49

D = (-36)² - 4 * 7 * 49 D = 1296 - 1372 D = -76

Так как дискриминант отрицательный, то уравнение не имеет действительных корней, следовательно, система уравнений не имеет решений.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос