
Укажите систему уравнений которая является математической моделью ситуации диагональ прямоугольника
со сторонами х и у равна 26 а его периметр равен 68

Ответы на вопрос

{ 2*(х+у)=68



получим систему :
{√(х² +у²)=26
{ 2*(х+у)=68



Mathematical Model for the Diagonal of a Rectangle
To find the mathematical model for the situation described, we need to consider a rectangle with sides of length x and y. The diagonal of the rectangle is given as 26, and the perimeter is given as 68.
Let's denote the length of the rectangle as x and the width as y. The perimeter of a rectangle is given by the formula:
Perimeter = 2x + 2y In this case, the perimeter is given as 68. So we can write the equation:
2x + 2y = 68
The diagonal of a rectangle can be found using the Pythagorean theorem, which states that the square of the hypotenuse (diagonal) is equal to the sum of the squares of the other two sides. In this case, the diagonal is given as 26, so we can write the equation:
x^2 + y^2 = 26^2 Therefore, the system of equations that represents the mathematical model for the given situation is:
2x + 2y = 68 x^2 + y^2 = 26^2
These equations can be solved simultaneously to find the values of x and y that satisfy both equations and represent the sides of the rectangle.
Please note that the above equations are derived based on the information provided in the question and are not sourced from external references.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili