
1)sin x/2=1 2)cos 2x +2=0 3)sin 2x=-1/2 4)2cos x +√3=0 5)√3 tg 2x+1=0 Решите задачи паже))


Ответы на вопрос




1) sin(x/2) = 1
To solve the equation sin(x/2) = 1, we can start by finding the values of x that satisfy this equation.
Using the trigonometric identity sin(x/2) = ±√[(1 - cos(x))/2], we can rewrite the equation as:
√[(1 - cos(x))/2] = 1
Squaring both sides of the equation, we get:
(1 - cos(x))/2 = 1
Multiplying both sides by 2, we have:
1 - cos(x) = 2
Rearranging the equation, we get:
cos(x) = -1
The cosine function equals -1 at π radians (180 degrees) and its multiples. Therefore, the solutions to the equation sin(x/2) = 1 are:
x/2 = π + 2πn, where n is an integer
Solving for x, we have:
x = 2π + 4πn, where n is an integer
So, the solutions to the equation sin(x/2) = 1 are x = 2π + 4πn, where n is an integer.
2) cos(2x) + 2 = 0
To solve the equation cos(2x) + 2 = 0, we can start by isolating the cosine term.
Subtracting 2 from both sides of the equation, we get:
cos(2x) = -2
Since the cosine function has a range of -1 to 1, there are no real solutions to the equation cos(2x) + 2 = 0.
3) sin(2x) = -1/2
To solve the equation sin(2x) = -1/2, we can use the inverse sine function to find the values of x.
Taking the inverse sine of both sides of the equation, we have:
2x = arcsin(-1/2)
Using the unit circle or a calculator, we find that the principal value of arcsin(-1/2) is -π/6.
Therefore, the solutions to the equation sin(2x) = -1/2 are:
2x = -π/6 + 2πn, where n is an integer
Solving for x, we have:
x = -π/12 + πn, where n is an integer
So, the solutions to the equation sin(2x) = -1/2 are x = -π/12 + πn, where n is an integer.
4) 2cos(x) + √3 = 0
To solve the equation 2cos(x) + √3 = 0, we can start by isolating the cosine term.
Subtracting √3 from both sides of the equation, we get:
2cos(x) = -√3
Dividing both sides by 2, we have:
cos(x) = -√3/2
Using the unit circle or a calculator, we find that the principal value of cos(x) = -√3/2 is 5π/6.
Therefore, the solutions to the equation 2cos(x) + √3 = 0 are:
x = π ± 2πn, where n is an integer
So, the solutions to the equation 2cos(x) + √3 = 0 are x = π ± 2πn, where n is an integer.
5) √3 + tg(2x) + 1 = 0
To solve the equation √3 + tg(2x) + 1 = 0, we can start by isolating the tangent term.
Subtracting √3 and 1 from both sides of the equation, we get:
tg(2x) = -√3 - 1
Taking the inverse tangent of both sides of the equation, we have:
2x = arctan(-√3 - 1)
Using a calculator, we find that the principal value of arctan(-√3 - 1) is approximately -1.107.
Therefore, the solutions to the equation √3 + tg(2x) + 1 = 0 are:
2x = -1.107 + πn, where n is an integer
Solving for x, we have:
x = -0.554 + πn, where n is an integer
So, the solutions to the equation √3 + tg(2x) + 1 = 0 are x = -0.554 + πn, where n is an integer.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili