Вопрос задан 07.05.2019 в 04:48. Предмет Алгебра. Спрашивает Колесников Владислав.

Расскажите пожалуйста теорему виетта, и покажите на примере, а то не очень понимаю

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Орлов Алексей.
Решение приложено к снимку
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

The Vieta's Theorem

Vieta's theorem is a fundamental result in algebra that relates the coefficients of a polynomial to the sums and products of its roots. It provides a way to find relationships between the roots and coefficients of a polynomial equation.

Let's consider a polynomial equation of degree n:

anxn + an-1xn-1 + ... + a1x + a0 = 0

where an, an-1, ..., a1, a0 are the coefficients of the polynomial, and x is the variable.

Vieta's theorem states that for this polynomial equation, the sum of the roots is equal to the negation of the coefficient of the second-to-last term divided by the coefficient of the leading term, and the product of the roots is equal to the constant term divided by the coefficient of the leading term.

Let's illustrate this with an example:

Consider the quadratic equation:

2x2 - 5x + 3 = 0

According to Vieta's theorem, the sum of the roots is equal to the negation of the coefficient of the second-to-last term divided by the coefficient of the leading term. In this case, the sum of the roots is:

x1 + x2 = -(-5) / 2 = 5/2

The product of the roots is equal to the constant term divided by the coefficient of the leading term. In this case, the product of the roots is:

x1 * x2 = 3 / 2 = 3/2

So, for the quadratic equation 2x2 - 5x + 3 = 0, the sum of the roots is 5/2 and the product of the roots is 3/2.

This theorem can be extended to equations of higher degrees as well, where the relationships between the roots and coefficients become more complex. Vieta's theorem provides a powerful tool for solving polynomial equations and understanding the properties of their roots.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос