
прямой угол разделили лучами исходящими из вершины на три неравных угла какие углы получились если
известно что угол 1 на 24 градуса больше суммы угла 2 и угла 3 а сумма 3 и 1 угла равна 70 градусов

Ответы на вопрос

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii



Problem Analysis
We are given that a right angle is divided by rays emanating from the vertex into three unequal angles. We need to determine the measures of these angles given that angle 1 is 24 degrees larger than the sum of angles 2 and 3, and the sum of angles 3 and 1 is 70 degrees.Solution
Let's denote the three angles as angle 1, angle 2, and angle 3. We can set up the following equations based on the given information:1. Angle 1 is 24 degrees larger than the sum of angles 2 and 3: angle 1 = angle 2 + angle 3 + 24. 2. The sum of angles 3 and 1 is 70 degrees: angle 3 + angle 1 = 70.
To solve these equations, we can substitute the value of angle 1 from equation 1 into equation 2:
(angle 2 + angle 3 + 24) + angle 3 = 70.
Simplifying the equation, we get:
angle 2 + 2 * angle 3 = 46.
Now, we have two equations with two unknowns. We can solve this system of equations to find the values of angle 2 and angle 3.
Let's solve the system of equations:
1. From equation 1, we have: angle 1 = angle 2 + angle 3 + 24. 2. From equation 2, we have: angle 3 + angle 1 = 70.
Substituting the value of angle 1 from equation 1 into equation 2, we get:
angle 3 + (angle 2 + angle 3 + 24) = 70.
Simplifying the equation, we get:
2 * angle 3 + angle 2 = 46.
Now, we can solve this system of equations to find the values of angle 2 and angle 3.
Let's solve the system of equations:
1. From equation 1, we have: angle 1 = angle 2 + angle 3 + 24. 2. From equation 2, we have: 2 * angle 3 + angle 2 = 46.
To solve this system of equations, we can use substitution or elimination method. Let's use the elimination method:
Multiply equation 1 by 2:
2 * angle 1 = 2 * (angle 2 + angle 3 + 24).
Simplifying the equation, we get:
2 * angle 1 = 2 * angle 2 + 2 * angle 3 + 48.
Now, subtract equation 2 from the above equation:
(2 * angle 1) - (2 * angle 3 + angle 2) = (2 * angle 2 + 2 * angle 3 + 48) - (2 * angle 3 + angle 2).
Simplifying the equation, we get:
2 * angle 1 - angle 2 = angle 2 + 48.
Rearranging the equation, we get:
3 * angle 2 = 2 * angle 1 - 48.
Now, we can substitute the value of angle 2 from the above equation into equation 1 to find the value of angle 3.
Substituting the value of angle 2, we get:
angle 1 = (2 * angle 1 - 48) + angle 3 + 24.
Simplifying the equation, we get:
angle 1 = 2 * angle 1 - 24 + angle 3 + 24.
Simplifying further, we get:
angle 1 = angle 1 + angle 3.
This equation tells us that angle 1 is equal to angle 1 + angle 3, which means angle 3 is 0 degrees. However, this contradicts the given information that the three angles are unequal. Therefore, there is no solution to this problem.
Conclusion
Based on the given information, there is no solution to the problem. The angles cannot be determined as the equations lead to a contradiction.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili