
Два автомобиля выезжают одновременно из одного города в другой, находящийся на расстоянии 500км.
Скорость первого на 10км/ч больше скорости второго, и поэтому первый автомобиль приезжает на место на 1ч раньше второго. Определите скорость каждого автомобиля!!!Умоляю, ребят, помогите)))

Ответы на вопрос

х+10+х=500
2х= 500-10
2х=480
х= 240



Problem Analysis
We have two cars traveling from one city to another, a distance of 500 km. The first car is traveling at a speed that is 10 km/h faster than the second car. The first car arrives at the destination 1 hour earlier than the second car. We need to determine the speed of each car.Solution
Let's assume the speed of the second car is x km/h. Since the speed of the first car is 10 km/h faster, we can represent it as x + 10 km/h.We know that the time taken by the first car to travel the distance is 1 hour less than the time taken by the second car. Let's represent the time taken by the second car as t hours. Therefore, the time taken by the first car is t - 1 hours.
We can use the formula speed = distance / time to calculate the speeds of the cars.
For the first car: speed of the first car = distance / time taken by the first car x + 10 = 500 / (t - 1)
For the second car: speed of the second car = distance / time taken by the second car x = 500 / t
We can solve these two equations to find the values of x and t.
Let's solve the equations:
x + 10 = 500 / (t - 1) (Equation 1) x = 500 / t (Equation 2)
We can solve Equation 1 for x and substitute it into Equation 2:
500 / t + 10 = 500 / (t - 1)
Now, let's solve this equation to find the value of t.
Calculation
To solve the equation 500 / t + 10 = 500 / (t - 1), we can cross-multiply and simplify:500(t - 1) + 10t(t - 1) = 500t
Expanding and simplifying:
500t - 500 + 10t^2 - 10t = 500t
Rearranging the terms:
10t^2 - 10t - 500 = 0
Dividing the equation by 10:
t^2 - t - 50 = 0
Now, we can solve this quadratic equation to find the value of t.
Using the quadratic formula: t = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 1, b = -1, and c = -50.
Substituting the values into the quadratic formula:
t = (-(-1) ± √((-1)^2 - 4(1)(-50))) / (2(1))
Simplifying:
t = (1 ± √(1 + 200)) / 2
t = (1 ± √201) / 2
We have two possible values for t:
t1 = (1 + √201) / 2 t2 = (1 - √201) / 2
Since time cannot be negative, we can discard t2.
Now, let's substitute the value of t1 back into Equation 2 to find the value of x:
x = 500 / t1
Calculating x:
x = 500 / ((1 + √201) / 2)
Simplifying:
x = 1000 / (1 + √201)
Therefore, the speed of the second car is approximately 1000 / (1 + √201) km/h, and the speed of the first car is approximately 1000 / (1 + √201) + 10 km/h.
Answer
The speed of the second car is approximately 1000 / (1 + √201) km/h, and the speed of the first car is approximately 1000 / (1 + √201) + 10 km/h.Please note that the values provided are approximate due to the use of the quadratic formula and the square root of an irrational number.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili