Вопрос задан 03.05.2019 в 16:00. Предмет Алгебра. Спрашивает Смирнов Евгений.

Решить уравнение (2y-3)(3y+1)+2(y-5)(y+5)=2(1-2y)^2+6y

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хотяинцева Вика.
(2y-3)(3y+1)+2(y-5)(y+5)=2(1-2y)²+6y
6у²-7у-3+2(у²-25)=2(1-4у+4у²)+6у
6у²-7у-3+2у²-50=2-8у+8у²+6у
-7у-3-50=2-8у+6у
-7у-3-50-2+8у-6у=0
-6у=55
у= -55/6= -9 1/6
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я могу помочь с этим уравнением. Давайте начнем с раскрытия скобок и упрощения правой и левой части уравнения.

Раскрытие скобок: \[ (2y-3)(3y+1) + 2(y-5)(y+5) = 2(1-2y)^2 + 6y \]

Раскроем скобки: \[ 6y^2 - 9y + 2y - 3 + 2(y^2 - 25) = 2(1 - 4y + 4y^2) + 6y \]

Упрощение левой и правой части: \[ 6y^2 - 7y - 3 + 2y^2 - 50 = 2 + 8y^2 - 8y + 6y \]

Упростим: \[ 8y^2 - 7y - 53 = 8y^2 - 2y + 2 \]

Теперь у нас осталось уравнение: \[ -7y - 53 = -2y + 2 \]

Решение: \[ -7y + 2y = 2 + 53 \] \[ -5y = 55 \] \[ y = -11 \]

Ответ: \[ y = -11 \]

Таким образом, решением данного уравнения является \( y = -11 \).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос