
Как найти 2 последовательных числа, произведение которых равно 156?


Ответы на вопрос

Ответ: числа -13 и -12 и числа 12 и 13



Finding Two Consecutive Numbers with a Given Product
To find two consecutive numbers whose product is equal to 156, we can use algebraic equations to represent the numbers and solve for them.
Let's denote the first number as x and the second number as x + 1 (since they are consecutive).
The product of these two numbers can be represented as: x * (x + 1) = 156
We can solve this equation to find the values of x and x + 1.
Solution
Using the given equation x * (x + 1) = 156, we can solve for x:x^2 + x - 156 = 0
Now, we can use the quadratic formula to solve for x: x = (-b ± √(b^2 - 4ac)) / (2a)
Where: - a = 1 - b = 1 - c = -156
Plugging these values into the quadratic formula, we get: x = (-1 ± √(1^2 - 4*1*(-156))) / (2*1) x = (-1 ± √(1 + 624)) / 2 x = (-1 ± √625) / 2 x = (-1 ± 25) / 2
So, the two possible values for x are: x = (-1 + 25) / 2 = 24 / 2 = 12 x = (-1 - 25) / 2 = -26 / 2 = -13
Therefore, the two consecutive numbers whose product is equal to 156 are 12 and 13.
This solution is based on the algebraic approach to solving the given problem.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili