
ПОМОГИТЕ ПОЖАЛУЙСТА,СРОЧНО!!!! Велосипедист проехал 20 км по дороге ведущей в гору,и 60 км по
ровной местности,затратив на весь путь 6 ч.С какой скоростью ехал велосипедист на каждом участке пути,если известно,что в гору он ехал со скоростью,на 5 км/ч меньше,чем по ровной местности?

Ответы на вопрос

пусть х скорость на ровной дороге
20/(х-5)+60/х=6
20х+60х-300-6х^2+30х=0
3х^2-55х+150=0
дискриминант 35
х=(55+35)/6=15
х=15 км/ч это на ровной дороге
15-5=10 км/ч на дороге, ведущей в гору



Problem Analysis
We are given that a cyclist traveled 20 km uphill and 60 km on flat ground, taking a total of 6 hours for the entire journey. We need to determine the speed at which the cyclist traveled on each segment of the route, knowing that the speed uphill was 5 km/h slower than on flat ground.Solution
Let's assume the speed of the cyclist on flat ground is x km/h. According to the given information, the speed uphill is 5 km/h slower, so the speed uphill is (x - 5) km/h.To find the time taken for each segment, we can use the formula: time = distance / speed.
The time taken for the uphill segment is 20 km / (x - 5) km/h.
The time taken for the flat ground segment is 60 km / x km/h.
Since the total time for the entire journey is 6 hours, we can write the equation: (20 / (x - 5)) + (60 / x) = 6.
Let's solve this equation to find the value of x.
Calculation
To solve the equation, we can multiply through by x(x - 5) to eliminate the denominators:(20x) + (60(x - 5)) = 6x(x - 5).
Expanding and simplifying the equation:
20x + 60x - 300 = 6x^2 - 30x.
Rearranging the equation to form a quadratic equation:
6x^2 - 30x - 20x - 60x + 300 = 0.
Combining like terms:
6x^2 - 110x + 300 = 0.
Now we can solve this quadratic equation to find the value of x.
Using the quadratic formula: x = (-b ± sqrt(b^2 - 4ac)) / (2a), where a = 6, b = -110, and c = 300.
Calculating the discriminant: b^2 - 4ac = (-110)^2 - 4(6)(300) = 12100 - 7200 = 4900.
Since the discriminant is positive, we have two real solutions.
Calculating the solutions:
x = (-(-110) ± sqrt(4900)) / (2(6)).
Simplifying:
x = (110 ± 70) / 12.
Calculating the two possible values of x:
x1 = (110 + 70) / 12 = 180 / 12 = 15.
x2 = (110 - 70) / 12 = 40 / 12 = 10/3 ≈ 3.33.
Since the speed of the cyclist cannot be negative, we discard the negative solution.
Therefore, the speed of the cyclist on flat ground is approximately 15 km/h.
The speed of the cyclist uphill is 5 km/h slower, so the speed uphill is approximately 10 km/h.
Answer
The cyclist traveled at a speed of approximately 15 km/h on flat ground and approximately 10 km/h uphill.Note: The above calculations are based on the given information and assumptions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili