Вопрос задан 27.04.2019 в 06:37. Предмет Алгебра. Спрашивает Сергеева Елизавета.

Решите систему уравнений

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жвакин Женя.
 \left \{ {{4x+3y=-1} \atop {2x^2-y=11}} \right.
Из уравнения 2 выразим переменную у
 \left \{ {{4x+3y=-1} \atop {y=2x^2-11}} \right.

4x+3(2x^2-11)=-1 \\ 4x+6x^2-33=-1 \\ 6x^2+4x-32=0|:2 \\ 3x^2+2x-16=0 \\ D=b^2-4ac=4+192=196;\,\, \sqrt{D} =14

x_1= \frac{-2+14}{6}=2;\,\,\,\,\,\,y_1=2\cdot 4-11=-3
x_2= \frac{-2-14}{6} =- \frac{8}{3} \,\,\,\,\,\,y_2=\frac{29}{9}
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

System of Equations

To solve the system of equations, we will use the information provided in the search results snippets. Here are a few examples of system of equations:

Example 1: 2x - y = 7 x^2 - xy = 12

Example 2: 3x - y = 3 3x - 2y = 0

Example 3: 2ab - 3a/b = 15 ab + a/b = 10

Example 4: y = x - 8 xy = -7

Example 5: 2x + y = 4 x - 2y = 5

Let's solve each of these examples step by step.

Example 1:

2x - y = 7 x^2 - xy = 12

To solve this system of equations, we can use the substitution method. We can solve the first equation for y and substitute it into the second equation:

From the first equation, we have: 2x - y = 7 y = 2x - 7

Substituting y in the second equation: x^2 - x(2x - 7) = 12 x^2 - 2x^2 + 7x = 12 -x^2 + 7x = 12 x^2 - 7x + 12 = 0

Factoring the quadratic equation: (x - 3)(x - 4) = 0

Setting each factor equal to zero: x - 3 = 0 or x - 4 = 0

Solving for x: x = 3 or x = 4

Substituting the values of x back into the first equation to find y: For x = 3: 2(3) - y = 7 6 - y = 7 y = -1

For x = 4: 2(4) - y = 7 8 - y = 7 y = 1

Therefore, the solutions to the system of equations are: (x, y) = (3, -1) and (4, 1).

Example 2:

3x - y = 3 3x - 2y = 0

To solve this system of equations, we can use the elimination method. We can multiply the first equation by 2 and subtract it from the second equation to eliminate x:

Multiplying the first equation by 2: 2(3x - y) = 2(3) 6x - 2y = 6

Subtracting the first equation from the second equation: (3x - 2y) - (6x - 2y) = 0 - 6 3x - 2y - 6x + 2y = -6 -3x = -6 x = 2

Substituting the value of x back into the first equation to find y: 3(2) - y = 3 6 - y = 3 y = 3

Therefore, the solution to the system of equations is: (x, y) = (2, 3).

Example 3:

2ab - 3a/b = 15 ab + a/b = 10

To solve this system of equations, we can use the substitution method. We can solve the second equation for a/b and substitute it into the first equation:

From the second equation, we have: ab + a/b = 10 a/b = 10 - ab

Substituting a/b in the first equation: 2ab - 3(10 - ab) = 15 2ab - 30 + 3ab = 15 5ab - 30 = 15 5ab = 45 ab = 9

Substituting the value of ab back into the second equation to find a/b: a/b = 10 - 9 a/b = 1

Therefore, the solution to the system of equations is: (a/b, ab) = (1, 9).

Example 4:

y = x - 8 xy = -7

To solve this system of equations, we can substitute the value of y from the first equation into the second equation:

Substituting y in the second equation: x(x - 8) = -7 x^2 - 8x = -7 x^2 - 8x + 7 = 0

Factoring the quadratic equation: (x - 7)(x - 1) = 0

Setting each factor equal to zero: x - 7 = 0 or x - 1 = 0

Solving for x: x = 7 or x = 1

Substituting the values of x back into the first equation to find y: For x = 7: y = 7 - 8 y = -1

For x = 1: y = 1 - 8 y = -7

Therefore, the solutions to the system of equations are: (x, y) = (7, -1) and (1, -7).

Example 5:

2x + y = 4 x - 2y = 5

To solve this system of equations, we can use the elimination method. We can multiply the second equation by 2 and add it to the first equation to eliminate y:

Multiplying the second equation by 2: 2(x - 2y) = 2(5) 2x - 4y = 10

Adding the second equation to the first equation: (2x + y) + (2x - 4y) = 4 + 10 4x - 3y = 14

Simplifying the equation: 4x - 3y = 14

There are infinitely many solutions to this system of equations since we have only one equation with two variables.

Therefore, the solution to the system of equations is: (x, y) = (x, 4x - 14), where x is any real number.

Please let me know if you need help with anything else!

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос