Вопрос задан 25.03.2019 в 10:44. Предмет Алгебра. Спрашивает Лошак Юра.

Y=3√3tgx-4√3-2π\√3. Найдите наибольшее значение функции на отрезке [--\frac{\pi}{4} ; \frac{\pi}{4}

]
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванов Вася.
Y=3\sqrt{3}tgx-4\sqrt{3}x-\frac{2\pi}{\sqrt{3}}
на промежутке
[-\frac{\pi}{4} ; \frac{\pi}{4} ]
такое условие?
=3-4*1.73*0.52-3.62=-4.2
Для этого найдём производную функции и приравняем её к нулю. Значение x, в котором производная равна нулю - подозрительное на экстремум (max  или min).
(\sqrt{3}(3tgx-4x)--\frac{2\pi}{\sqrt{3}})'=\sqrt(3)(\frac{3}{cos^2x}-4)
\sqrt{3}\frac{3}{cos^2x}-\sqrt{3}4=0
\sqrt{3}\frac{3}{cos^2x}=4\sqrt{3}
cos^2x=3/4
cosx=\sqrt{3}/2
x_{1} =-\pi/6
x_{2}=\pi/6

теперь вычислим значение этой функции в точках х1 и х2
y_{1}=3\sqrt{3}tg(-\pi/6)-4\sqrt{3}*(-\pi/6)-\frac{2\pi}{\sqrt{3}}
y_{1}=-3+3.6276-3.6276
y_{2}=3\sqrt{3}tg(\pi/6)-4\sqrt{3}*(\pi/6)-\frac{2\pi}{\sqrt{3}}
y_{2}=3-3.6276-3.6276=-7.2552

Значит максимум при x=-pi/6




0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос