
Вопрос задан 01.04.2018 в 05:02.
Предмет Алгебра.
Спрашивает Котик Альбина.
Произведение абсцисс точек, в которых к графику функции y=x^3 + 5x^2 паралельна прямой 6x + y = 27


Ответы на вопрос

Отвечает Балязин Александр.
Недопечатали, видимо) "...в которых касательная к графику..."
у = х³ + 5х²;
у' = 3х² + 10х
Пусть касательная проведена в точке х0. Запишем уравнение касательной в этой точке:
у = у'(х0) × (х - х0) + у(0).
Угловой коэффициент этой касательной равен у'(х0) и, по условию, равен -6 (касательная и прямая у = -6х + 27 параллельны ⇔ равны угловые коэффициенты).
Имеем уравнение:
у'(х0) = -6;
3(х0)² + 10(х0) = -6;
3(х0)² + 10(х0) + 6 = 0;
Нет надобности решать это уравнение, пусть даже и квадратное. По условию, необходимо найти произведение абсцисс. По теореме Виета, произведение корней уравнения равно отношению свободного члена и старшего коэффициента. В данном случае, произведение равно 6/3 = 2.
Ответ: 2.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili