
Найдите а) sin a, если cos a=-1/3 б) cos a, если sin a=2/5 в) tg a, если cos a=1/2


Ответы на вопрос

решение в приложении



а)
Given: cos(a) = -1/3
We know that sin^2(a) + cos^2(a) = 1 (from the Pythagorean identity). Substituting the given value of cos(a), we get: sin^2(a) + (-1/3)^2 = 1 sin^2(a) + 1/9 = 1 sin^2(a) = 1 - 1/9 sin^2(a) = 8/9 Taking the square root of both sides, we get: sin(a) = √(8/9) sin(a) = (√8)/(√9) sin(a) = (√(4*2))/(3) sin(a) = (2√2)/3
Therefore, sin(a) = (2√2)/3.
б)
Given: sin(a) = 2/5
We know that sin^2(a) + cos^2(a) = 1 (from the Pythagorean identity). Substituting the given value of sin(a), we get: (2/5)^2 + cos^2(a) = 1 4/25 + cos^2(a) = 1 cos^2(a) = 1 - 4/25 cos^2(a) = 25/25 - 4/25 cos^2(a) = 21/25 Taking the square root of both sides, we get: cos(a) = √(21/25) cos(a) = (√21)/(√25) cos(a) = (√(21))/(5)
Therefore, cos(a) = (√(21))/(5).
в)
Given: cos(a) = 1/2
We know that tan(a) = sin(a)/cos(a) (from the definition of tangent). Substituting the given value of cos(a), we get: tan(a) = sin(a)/(1/2) tan(a) = 2sin(a)
Since cos(a) = 1/2, this means that the angle a is in the first quadrant or the fourth quadrant. In the first quadrant, both sine and tangent are positive. Therefore, we can conclude that: tan(a) = 2sin(a) tan(a) = 2(√(1 - cos^2(a))) tan(a) = 2(√(1 - (1/2)^2)) tan(a) = 2(√(1 - 1/4)) tan(a) = 2(√(3/4)) tan(a) = 2(√(3))/(√(4)) tan(a) = 2(√(3))/2 tan(a) = √(3)
Therefore, tan(a) = √(3).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili