
Из 17 учащихся класса посещающих секции футбола и баскетбола. 15- футболисты и
10-баскетболисты.Сколько учащихся посещают две секции сразу?

Ответы на вопрос




Давайте решим эту задачу методом множеств.
Обозначим: - \( F \) - множество футболистов, - \( B \) - множество баскетболистов.
Из условия задачи у нас есть 17 учащихся, которые посещают секции футбола и баскетбола. Мы знаем, что 15 из них футболисты и 10 - баскетболисты. Таким образом, мы можем записать это следующим образом:
\[ |F \cup B| = 17 \]
где \( |F \cup B| \) - общее количество учащихся, посещающих хотя бы одну из секций.
Также у нас есть информация о том, что 15 учащихся - футболисты, и 10 - баскетболисты:
\[ |F| = 15 \] \[ |B| = 10 \]
Теперь мы хотим найти количество учащихся, посещающих обе секции. Обозначим это количество как \( |F \cap B| \).
Используем формулу включения-исключения:
\[ |F \cup B| = |F| + |B| - |F \cap B| \]
Подставим известные значения:
\[ 17 = 15 + 10 - |F \cap B| \]
Теперь решим уравнение относительно \( |F \cap B| \):
\[ |F \cap B| = 15 + 10 - 17 \] \[ |F \cap B| = 25 - 17 \] \[ |F \cap B| = 8 \]
Таким образом, 8 учащихся посещают обе секции одновременно.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili