Вопрос задан 24.02.2019 в 04:11. Предмет Алгебра. Спрашивает Романова Софья.

Разложите на множители 2x в квадрате − 5xy − 3yв квадрате

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Филимонова Аня.

2x^2-5xy-3y^2=\\ 2x^2+xy-6xy-3y^2=\\ (2x^2+xy)-(6xy+3y^2)=\\ x(2x+y)-3y(2x+y)=\\ (x-3y)(2x+y)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы разложить на множители выражение 2x^2 - 5xy - 3y^2, нужно найти два таких множителя, произведение которых равно данному выражению.

Для начала, посмотрим на первое слагаемое 2x^2. Это квадрат бинома (2x)^2, поэтому первым множителем будет 2x.

Теперь рассмотрим последнее слагаемое -3y^2. Оно также является квадратом бинома (-3y)^2, поэтому вторым множителем будет -3y.

Теперь нужно найти такое число, которое при умножении на первый и второй множители даст второе слагаемое -5xy. Заметим, что -5xy = (-4xy) + (-xy). То есть, -4xy и -xy будут такими числами.

Таким образом, разложение на множители будет выглядеть следующим образом: (2x - 4xy)(2x - y).

Проверим это разложение, умножив обратно множители: (2x - 4xy)(2x - y) = 2x * 2x + 2x * (-y) + (-4xy) * 2x + (-4xy) * (-y) = 4x^2 - 2xy - 8xy + 4xy^2 = 4x^2 - 10xy + 4xy^2.

Как видно, результат совпадает с исходным выражением 2x^2 - 5xy - 3y^2.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос