Вопрос задан 23.02.2019 в 01:29. Предмет Алгебра. Спрашивает Леханов Владимир.

5y2-8y+3=0 3x2-5x-42=0 (3x-2)-48=(x-2)2 0.5x4-3x2+4=0 Решите пожалуйста,,,,,

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Анурин Даниил.
5y^2-8y+3=0 
д=64-4*5*3=4=2^2
x=(8-+2)/10=1; 0.6
-------------------------------


3x^2-5x-42=0
д=25+4*3*42=529=23^2
x=(5-+23)/6=-3; 4
---------------------------------------------------


  (3x-2)-48=(x-2)^2
3x-2-48=x^2-4x+4
-x^2+3x+4x-2-48-4=0
x^2-7x+54=0
д=49-4*54=д<0
нет решения
=============================================     


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the given equations, let's break it down step by step:

1. 5y^2 - 8y + 3 = 0

To solve this quadratic equation, we can use factoring or the quadratic formula. In this case, let's try factoring:

The equation can be factored as (5y - 3)(y - 1) = 0.

Setting each factor equal to zero, we have: 5y - 3 = 0 --> y = 3/5 y - 1 = 0 --> y = 1

So the solutions for this equation are y = 3/5 and y = 1.

2. 3x^2 - 5x - 42 = 0

Again, let's try factoring this quadratic equation:

The equation can be factored as (3x + 7)(x - 6) = 0.

Setting each factor equal to zero, we have: 3x + 7 = 0 --> x = -7/3 x - 6 = 0 --> x = 6

So the solutions for this equation are x = -7/3 and x = 6.

3. (3x - 2) - 48 = (x - 2)^2

Expanding the right side of the equation, we have: 3x - 2 - 48 = x^2 - 4x + 4

Combining like terms, we get: 3x - 50 = x^2 - 4x + 4

Rearranging the equation, we have: x^2 - 7x + 54 = 0

Now, let's solve this quadratic equation using factoring or the quadratic formula:

The equation can be factored as (x - 6)(x - 9) = 0.

Setting each factor equal to zero, we have: x - 6 = 0 --> x = 6 x - 9 = 0 --> x = 9

So the solutions for this equation are x = 6 and x = 9.

4. 0.5x^4 - 3x^2 + 4 = 0

This equation is a quartic equation. Solving quartic equations can be more complex, and there is no general formula like the quadratic formula. However, we can try factoring or using numerical methods to approximate the solutions.

Unfortunately, factoring this equation is not straightforward. Therefore, we can use numerical methods, such as graphing or using a calculator or computer program, to find the approximate solutions.

Please note that without additional information or constraints, it is not possible to provide exact solutions for this quartic equation.

In summary, the solutions for the given equations are as follows: - For the equation 5y^2 - 8y + 3 = 0, the solutions are y = 3/5 and y = 1. - For the equation 3x^2 - 5x - 42 = 0, the solutions are x = -7/3 and x = 6. - For the equation (3x - 2) - 48 = (x - 2)^2, the solutions are x = 6 and x = 9. - For the equation 0.5x^4 - 3x^2 + 4 = 0, approximate solutions can be found using numerical methods.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос