
Cos (п/2-x/2) -3 cos (п-x/2)=0 Решите пожалуйста.


Ответы на вопрос

sin(x/2) + 3cos(x/2) = 0
cos(x/2) cos(x/2) cos(x/2)
tg(x/2) +3 =0
tg(x/2) = -3
x/2 = -arctg3 +πk, k∈Z
x= -2arctg3 + 2πk, k∈Z






Problem Statement
We are given the equation cos(π/2 - x/2) - 3cos(π - x/2) = 0 and we need to solve for x.Solution
To solve the equation, let's simplify it step by step.Step 1: Simplify the equation using trigonometric identities. Using the identity cos(π - θ) = -cos(θ), we can rewrite the equation as: cos(π/2 - x/2) + 3cos(x/2) = 0.
Step 2: Apply the double-angle formula for cosine. The double-angle formula for cosine is cos(2θ) = 2cos^2(θ) - 1. Using this formula, we can rewrite the equation as: 2cos^2(x/2) - 1 + 3cos(x/2) = 0.
Step 3: Simplify the equation further. Let's substitute y = cos(x/2). Then the equation becomes: 2y^2 - 1 + 3y = 0.
Step 4: Solve the quadratic equation. To solve the quadratic equation, we can factor it or use the quadratic formula. Factoring the equation, we get: (2y + 1)(y - 1) = 0.
Setting each factor equal to zero, we have two possible solutions: 1. 2y + 1 = 0: Solving for y, we get y = -1/2.
2. y - 1 = 0: Solving for y, we get y = 1.
Step 5: Solve for x. Now that we have the values of y, we can substitute them back into the equation y = cos(x/2) to solve for x.
For y = -1/2: cos(x/2) = -1/2.
For y = 1: cos(x/2) = 1.
To find the values of x, we need to consider the range of the cosine function. The cosine function has a range of [-1, 1].
For cos(x/2) = -1/2: The solutions for x/2 are 7π/6 + 2πn and 11π/6 + 2πn, where n is an integer.
For cos(x/2) = 1: The solutions for x/2 are 0 + 2πn and 2π + 2πn, where n is an integer.
Therefore, the solutions for x are: - x = 7π/3 + 4πn, - x = 11π/3 + 4πn, - x = 2πn, - x = 4π + 2πn, where n is an integer.
Please note that these solutions are in radians. If you need the solutions in degrees, you can convert them using the conversion factor: 180°/π.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili