Вопрос задан 19.02.2019 в 12:02. Предмет Алгебра. Спрашивает Шевцова Анастасия.

Клиент внес в банк 20000 рублей. часть этих денег он положил на вклад по которому начисляется 8%

годовых а остальные деньги на вклад по которому зачисляется 7% годовых. через год общий доход с этих вкладов составил 1480 рублей. какие суммы внес клиент на каждый из вкладов?плиззззззз срочно очень срочно надо
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ярошевська Соломія.
Системка однако:
x+y=20000
0.08x+0.07y=1480
решение:
y=20000-x
0.08x+0.07*(20000-x)=1480
0.08x+1400-0.07x=1480
0.08x-0.07x=1480-1400
0.01x=80
x=80/0.01
x=8000
y=20000-8000=12000
ответ
8000 под 8%
12000 под 7%
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Deposits

To determine the amounts deposited by the client on each of the two accounts, we can use the information provided about the total income earned from the deposits after one year.

Let's assume that the amount deposited on the account with an 8% annual interest rate is x rubles, and the amount deposited on the account with a 7% annual interest rate is y rubles.

According to the given information, the total income earned from both deposits after one year is 1480 rubles.

Calculation of Interest

The interest earned on the account with an 8% annual interest rate can be calculated as 0.08x rubles.

The interest earned on the account with a 7% annual interest rate can be calculated as 0.07y rubles.

According to the given information, the total income earned from both deposits after one year is 1480 rubles. Therefore, we can write the following equation:

0.08x + 0.07y = 1480

Calculation of Deposited Amounts

To find the amounts deposited on each account, we need to solve the equation above. However, we need one more equation to solve for both x and y.

The total amount deposited by the client is 20000 rubles. Therefore, we can write the second equation:

x + y = 20000 Now, we have a system of two equations with two variables. We can solve this system to find the values of x and y.

Solving the System of Equations

To solve the system of equations, we can use various methods such as substitution or elimination. Let's use the elimination method.

Multiplying the second equation by -0.08, we get:

-0.08x - 0.08y = -1600 (multiplying the equation by -0.08)

Adding this equation to the first equation, we eliminate the x term:

-0.08x + 0.08x + 0.07y - 0.08y = -1600 + 1480

Simplifying the equation, we have:

-0.01y = -120 (combining like terms)

Dividing both sides of the equation by -0.01, we find:

y = 12000 (dividing by -0.01)

Substituting the value of y into the second equation, we can solve for x:

x + 12000 = 20000

Simplifying the equation, we have:

x = 8000

Answer

Therefore, the client deposited 8000 rubles on the account with an 8% annual interest rate and 12000 rubles on the account with a 7% annual interest rate.

Please note that the calculations are based on the given information and assumptions made during the process.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос