Вопрос задан 19.02.2019 в 10:22. Предмет Алгебра. Спрашивает Ахремчик Яна.

Решите уравнение 7sin2x+3sinx-4=0Заранее спасибо, срочно нужно

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Коловандина Полина.
Данное уравнение можно решить с помощью замены.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения уравнения 7sin^2x + 3sinx - 4 = 0 мы можем воспользоваться методом замены переменной. Обозначим sinx за t, тогда уравнение примет вид 7t^2 + 3t - 4 = 0.

Теперь мы можем решить это квадратное уравнение, используя квадратное уравнение:

D = 3^2 - 4*7*(-4) = 9 + 112 = 121

t1,2 = (-3 +- sqrt(121)) / 14 t1 = (-3 + 11) / 14 = 8/14 = 4/7 t2 = (-3 - 11) / 14 = -14/14 = -1

Теперь мы найдем значения sinx, соответствующие этим значениям t:

sinx1 = arcsin(4/7) sinx2 = arcsin(-1)

Таким образом, решениями уравнения 7sin^2x + 3sinx - 4 = 0 являются x1 = arcsin(4/7) и x2 = arcsin(-1).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос