Вопрос задан 18.02.2019 в 15:46. Предмет Алгебра. Спрашивает Мадиянов Нұржан.

Туристы прошли 24 км ,причём 3 ч дорога шла в гору ,а 2 ч-под гору . с какой скоростью туристы шли

в гору и с какой под гору ,если на первом участке их скорость была на 2км/ч меньше ,чем на втором
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зайцев Семён.
Интересная задача.Здесь как бы подразумевается физическое сопротивление при ходьбе в гору,но это сопротивление ни в коем случае складывать нельзя,мы же не по реке плывём.
Пусть со скоростью х шли туристы под гору,
тогда прошли 2х км под гору.
Соответственно,(х-2)3 в гору.
Составим уравнение:
2х+(х-2)3=24
5х=30
х=6.
Отсюда следует,что скорость под гору равна 6,а в гору 6-2=4 по условию соответственно.
Ответ:в гору - 4 км\ч.Под гору 6 км\ч
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Speed

To calculate the speed at which the tourists walked uphill and downhill, we need to consider the given information. The tourists walked a total distance of 24 km, with 3 hours spent walking uphill and 2 hours spent walking downhill. On the first segment of the journey, their speed was 2 km/h slower than on the second segment.

Let's break down the problem and calculate the speeds step by step:

1. Calculate the distance walked uphill: - The time spent walking uphill is 3 hours. - Let's assume the speed of the tourists on the second segment (downhill) is x km/h. - The distance walked uphill can be calculated using the formula: distance = speed * time. - Therefore, the distance walked uphill is: distance = x km/h * 3 hours.

2. Calculate the distance walked downhill: - The time spent walking downhill is 2 hours. - The distance walked downhill can be calculated using the formula: distance = speed * time. - Therefore, the distance walked downhill is: distance = x km/h * 2 hours.

3. Calculate the total distance walked: - The total distance walked is given as 24 km. - The total distance walked can be calculated by adding the distance walked uphill and the distance walked downhill. - Therefore, the total distance walked is: total distance = distance walked uphill + distance walked downhill.

4. Set up an equation to solve for the speed: - The speed on the first segment (uphill) is 2 km/h slower than the speed on the second segment (downhill). - Therefore, the speed on the first segment is: speed on first segment = x km/h - 2 km/h.

Now, let's solve the equation to find the speeds at which the tourists walked uphill and downhill.

Solution

1. Calculate the distance walked uphill: - Let's assume the speed on the second segment (downhill) is x km/h. - The distance walked uphill is: distance = x km/h * 3 hours.

2. Calculate the distance walked downhill: - The distance walked downhill is: distance = x km/h * 2 hours.

3. Calculate the total distance walked: - The total distance walked is given as 24 km. - The total distance walked is: total distance = distance walked uphill + distance walked downhill.

4. Set up an equation to solve for the speed: - The speed on the first segment (uphill) is 2 km/h slower than the speed on the second segment (downhill). - Therefore, the speed on the first segment is: speed on first segment = x km/h - 2 km/h.

Now, let's solve the equation to find the speeds at which the tourists walked uphill and downhill.

Let's assume the speed on the second segment (downhill) is x km/h.

The distance walked uphill is: distance = x km/h * 3 hours. The distance walked downhill is: distance = x km/h * 2 hours. The total distance walked is given as 24 km.

Therefore, the total distance walked is: total distance = distance walked uphill + distance walked downhill.

Setting up the equation:

total distance = (x km/h * 3 hours) + (x km/h * 2 hours)

Simplifying the equation:

24 km = 3x km + 2x km

Combining like terms:

24 km = 5x km

Solving for x:

x = 24 km / 5

x = 4.8 km/h

Therefore, the speed at which the tourists walked uphill is 4.8 km/h, and the speed at which they walked downhill is also 4.8 km/h.

Please note that the given information does not specify the units for the speeds, so we have assumed kilometers per hour (km/h) for consistency.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос