Вопрос задан 17.02.2019 в 11:25. Предмет Алгебра. Спрашивает Мавлютбердеева Алия.

Катер за 2ч прошел 8км против течения и 36км по течению реки. Если бы он против течения прошел 6 км

, а по течению 33км, то затратил бы на это 1 час 45мин. Найдите скорость катера по озеру.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Черноскутова Злата.
8+6=14(KM)
36+33=69(km)
69+14=83(KM)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Boat's Speed on the Lake

To find the speed of the boat on the lake, we need to determine the speed of the current and the speed of the boat relative to the water. Let's break down the given information and solve the problem step by step.

Given information: - The boat traveled 8 km against the current in 2 hours. - The boat traveled 36 km with the current in 2 hours. - If the boat had traveled 6 km against the current and 33 km with the current, it would have taken 1 hour and 45 minutes.

Let's denote the speed of the boat as B and the speed of the current as C.

1. Finding the speed of the boat against the current: - The boat traveled 8 km against the current in 2 hours. - Therefore, the speed of the boat against the current is 8 km / 2 hours = 4 km/h.

2. Finding the speed of the boat with the current: - The boat traveled 36 km with the current in 2 hours. - Therefore, the speed of the boat with the current is 36 km / 2 hours = 18 km/h.

3. Finding the speed of the current: - If the boat had traveled 6 km against the current and 33 km with the current, it would have taken 1 hour and 45 minutes. - Converting 1 hour and 45 minutes to hours: 1 hour + 45 minutes / 60 minutes = 1.75 hours. - The time it takes to travel against the current is 2 hours, and the time it takes to travel with the current is 2 hours. - Therefore, the total time it takes to travel 6 km against the current and 33 km with the current is 2 hours + 2 hours + 1.75 hours = 5.75 hours. - The total distance traveled is 6 km against the current and 33 km with the current, which is 6 km + 33 km = 39 km. - Therefore, the speed of the boat relative to the water is 39 km / 5.75 hours = 6.78 km/h.

4. Calculating the speed of the boat on the lake: - The speed of the boat on the lake is the sum of the speed of the boat relative to the water and the speed of the current. - Therefore, the speed of the boat on the lake is 6.78 km/h + C km/h.

Unfortunately, the given information does not provide the exact value of the speed of the current (C). Without this information, we cannot determine the precise speed of the boat on the lake.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос