
Помогите пожалуйста. Надо решить СИСТЕМОЙ ИЗ ДВУХ УРАВНЕНИЙ.1) Собственная скорость моторной лодки
больше скорости течения в 4 раза. Найдите скорость лодки по течению если , если за 1 час против течения и за 1/3 (дробь) часа по течению лодка пройдет 14 км.2) Дачник проделал путь длиной 46 километров . Он шел 2 часа пешком и 3 часа ехал на велосипеде . На велосипеде он двигался в 2,4 раза быстрее , чем пешком . С какой скоростью дачник шел и с какой скоростью ехал?

Ответы на вопрос

Получаем первое уравнение:2V=3V1=46
Решаем подставляем значение V1 2V+3*2,4*V=46
Отсюда V=5 a V1=12



Problem 1: Speed of a Motorboat in Relation to the Current
To solve this problem, we need to find the speed of the motorboat in relation to the current. Let's break down the given information:
- The speed of the motorboat is 4 times greater than the speed of the current. - The boat travels 14 km in 1 hour against the current. - The boat travels the same distance of 14 km in 1/3 hour with the current.
To find the speed of the motorboat, we can set up a system of equations.
Let's assume: - The speed of the motorboat is represented by x km/h. - The speed of the current is represented by y km/h.
Equation 1: The speed of the motorboat is 4 times greater than the speed of the current. ``` x = 4y ```
Equation 2: The boat travels 14 km in 1 hour against the current. ``` x - y = 14/1 = 14 ```
Equation 3: The boat travels 14 km in 1/3 hour with the current. ``` x + y = 14/(1/3) = 14 * 3 = 42 ```
Now we have a system of equations: ``` x = 4y (Equation 1) x - y = 14 (Equation 2) x + y = 42 (Equation 3) ```
To solve this system of equations, we can use the method of substitution or elimination. Let's use the method of elimination.
Adding Equation 2 and Equation 3 eliminates the variable x: ``` (x - y) + (x + y) = 14 + 42 2x = 56 x = 56/2 x = 28 ```
Now we can substitute the value of x back into Equation 1 to find the value of y: ``` 28 = 4y y = 28/4 y = 7 ```
Therefore, the speed of the motorboat is 28 km/h and the speed of the current is 7 km/h.
Problem 2: Speed of a Hiker and Bicyclist
To solve this problem, we need to find the speed of the hiker and the bicyclist. Let's break down the given information:
- The total distance traveled is 46 km. - The hiker walks for 2 hours. - The bicyclist rides for 3 hours. - The bicyclist's speed is 2.4 times faster than the hiker's speed.
Let's assume: - The speed of the hiker is represented by x km/h. - The speed of the bicyclist is represented by y km/h.
Equation 1: The total distance traveled is 46 km. ``` 2x + 3y = 46 ```
Equation 2: The bicyclist's speed is 2.4 times faster than the hiker's speed. ``` y = 2.4x ```
Now we have a system of equations: ``` 2x + 3y = 46 (Equation 1) y = 2.4x (Equation 2) ```
To solve this system of equations, we can substitute the value of y from Equation 2 into Equation 1.
Substituting 2.4x for y in Equation 1: ``` 2x + 3(2.4x) = 46 2x + 7.2x = 46 9.2x = 46 x = 46/9.2 x = 5 ```
Now we can substitute the value of x back into Equation 2 to find the value of y: ``` y = 2.4x y = 2.4(5) y = 12 ```
Therefore, the speed of the hiker is 5 km/h and the speed of the bicyclist is 12 km/h.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili