
На рисунке представлен график производной функций f(x) которая определена на отрезке (-11;3). Во
скольких точках касательная к графику функций f(x) (именно к функций f(x) а не к функций f'(x)) параллельна к y=3x-11 или лежит на этой прямой?


Ответы на вопрос

Прямая у=3х-11 имеет угловой коэффициент k=3.
Касательная к графику функции y=f(x) параллельна прямой у=3х-11, значит их угловые коэффициенты равны. Угловой коэффициент касательной равен значению производной в точке касания x₀, то есть
f '(x₀)=3.
Так как задан график у=f '(x) , то ищем , в скольких точках значение f '(x) равно 3 . Для этого надо провести прямую у=3 (прямая параллельна оси ОХ и проходит через точку (0,3) ) и посмотреть, сколько точек пересечения с графиком y=f '(x) получим.
Будет 6 точек.



Уравнение прямой умеет вид y=kx+m где k–угловой коэффициент. Производная в точке равна угловому коэффициенту касательной, проведенной в эту точку. Так как касательная параллельна прямой y =3x–11 или совпадает с ней, их угловые коэффициенты равны 3. На графике находим y=3 и смотрим сколько раз эта прямая пересекает график производной.На данном интервале таких точек 6.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili