Вопрос задан 02.02.2019 в 14:47. Предмет Алгебра. Спрашивает Черномашенцева Елизавета.

Пожалуйста, помогите решить логарифмическое неравенство. Буду очень благодарен!Заранее спасибо!


0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Kitina Tasha.
\log_{\frac{1}{49}(26-5x)=\log_{7^{-2}}(26-5x)==-\frac{1}{2}\log_7(26-5x),\\\\\log_{6-x}\frac{1}{7}=-\log_{6-x}7=-\frac{1}{\log_7(6-x)}

OOF:\; 26-5x>0,\; 6-x>0,\; 6-x\ne 1\\\\x<5,2,\; x<6,\; x\ne 5\\\\x\in (-\infty;5)U(5;\; 5,2)\\\\\frac{\frac{1}{2}\log_7(26-5x)}{\log_7(6-x)} \geq 1\\\\\log_7\sqrt{26-5x} \geq \log_7(6-x)\\\\\sqrt{26-5x} \geq 6-x\\\\26-5x \geq (6-x)^2\\\\x^2-7x+10 \leq 0\\\\x_1=2,x_2=5\\\\+ + + + +[2]- - - - -[5]+ + + + + + +\\\\x\in [2,5]\\\\Otvet;\; x\in [2,5).

В ответе учли, что  в ООФ не входит х=5.
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос