
Вопрос задан 02.02.2019 в 10:03.
Предмет Алгебра.
Спрашивает Гуцуляк Саша.
На острове живут 7 синих, 9 зеленых и 11 красных хамелеонов. Когда два хамелеона разного цвета
встречаются, они оба меняют свой цвет на третий (синий и зеленый – на красный, и так далее). Возможно ли, что в какой-то момент все хамелеоны станут одного цвета?

Ответы на вопрос

Отвечает Амирова Эвелина.
Вот такая же задача, с другим кол-ом хамелеонов.
На одном тропическом острове живёт 45 хамелеонов. Из них красных - 13, зелёных - 15, а остальные 17 - синие.
Два хамелеона разного цвета при встрече меняют цвет на третий. То есть, при встрече зелёного и красного хамелеона, они оба поменяют цвет на синий.
Может ли так оказаться, что по прошествии некоторого времени все хамелеоны на острове окажутся одного цвета?
Ответ: Обозначим цвета хамелеонов: красный=0, зелёный=1, синий=2.Тогда получается, что встречи хамелеонов описываются суммами их цветов:0+1 → 2+21+2 → 0+00+2 → 1+1
Заметим, что при встрече хамелеонов всегда неизменной остаётся сумма их цветов, взятая по модулю 3 (то есть, остаток от деления суммы цветов на 3). В самом деле,
0+1 (остаток = 1) → 2+2 =4 (остаток = 1)1+2 (остаток = 0) → 0+0 = 0 (остаток = 0)0+2 (остаток = 2) → 1+1 = 2 (остаток = 2)
Это значит, что при любых встречах хамелеонов остаток от деления суммы всех цветов на 3 не изменится.
Изначально сумма цветов хамелеонов была равна 13*0 + 15*1 + 17*2 = 49.49 mod 3 = 1, поэтому как бы ни меняли свой цвет хамелеоны, остаток от деления суммы их цветов на 3 останется 1.
В случае, если все хамелеоны стали бы одного цвета, остаток бы стал равен нулю (ведь 45*N всегда делится на три нацело), а значит, такого произойти не может.
Все хамелеоны никогда не станут одного цвета!
На одном тропическом острове живёт 45 хамелеонов. Из них красных - 13, зелёных - 15, а остальные 17 - синие.
Два хамелеона разного цвета при встрече меняют цвет на третий. То есть, при встрече зелёного и красного хамелеона, они оба поменяют цвет на синий.
Может ли так оказаться, что по прошествии некоторого времени все хамелеоны на острове окажутся одного цвета?
Ответ: Обозначим цвета хамелеонов: красный=0, зелёный=1, синий=2.Тогда получается, что встречи хамелеонов описываются суммами их цветов:0+1 → 2+21+2 → 0+00+2 → 1+1
Заметим, что при встрече хамелеонов всегда неизменной остаётся сумма их цветов, взятая по модулю 3 (то есть, остаток от деления суммы цветов на 3). В самом деле,
0+1 (остаток = 1) → 2+2 =4 (остаток = 1)1+2 (остаток = 0) → 0+0 = 0 (остаток = 0)0+2 (остаток = 2) → 1+1 = 2 (остаток = 2)
Это значит, что при любых встречах хамелеонов остаток от деления суммы всех цветов на 3 не изменится.
Изначально сумма цветов хамелеонов была равна 13*0 + 15*1 + 17*2 = 49.49 mod 3 = 1, поэтому как бы ни меняли свой цвет хамелеоны, остаток от деления суммы их цветов на 3 останется 1.
В случае, если все хамелеоны стали бы одного цвета, остаток бы стал равен нулю (ведь 45*N всегда делится на три нацело), а значит, такого произойти не может.
Все хамелеоны никогда не станут одного цвета!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili