
Вопрос задан 24.04.2018 в 10:21.
Предмет Алгебра.
Спрашивает Александрова Дарья.
Решить задачу на движение: Катер прошел 15 км против течения реки и 6 км по течению реки, затратив
на весь путь столько же времени, сколько ему потребовалась бы, если скорость течения реки 2 км/ч ?

Ответы на вопрос

Отвечает Мушкет Владислав.
Пусть х км/ч - собственная скорость катера,
тогда (х + 2) км/ч - скорость катера по течению реки,
(х - 2) км/ч - скорость катера против течения реки.
15 : (х - 2) + 6 : (х + 2) = 22 : х
15х * (х + 2) + 6х * (х - 2) = 22(х - 2)(х + 2)
15х² + 30х + 6х² - 12х = 22х² + 44х - 44х - 88
21х² + 18х = 22х² - 88
22х² - 21х² - 18х - 88 = 0
х² - 18х - 88 = 0
D = - 18² - 4 * (- 88) = 324 + 352 = 676 = 26²
Второй корень не подходит, значит, собственная скорость катера 22 км/ч.
Ответ: 22 км/ч.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili