
Вопрос задан 18.01.2019 в 04:01.
Предмет Алгебра.
Спрашивает Орлова Рина.
Провели пять прямых, каждые две из которых пересекаются. Каково наименьшее возможное количество
точек пересечения этих прямых? Какое наибольшее количество точек пересечения может образоваться? С РИСУНКОМ,ПОЖАЛУЙСТА!

Ответы на вопрос

Отвечает Конышев Степа.
Наименьшее возможное количество - 1 точка - когда все прямые имеют одну общую точку.
У каждой из 5 прямых может быть максимум 4 точки пересечения, причём каждая точка пересечения принадлежит минимум двум прямым. Тогда точек пересечения не больше, чем 5*4/2=10. Такое возможно, если каждая точка пересечения принадлежит ровно двум прямым.
У каждой из 5 прямых может быть максимум 4 точки пересечения, причём каждая точка пересечения принадлежит минимум двум прямым. Тогда точек пересечения не больше, чем 5*4/2=10. Такое возможно, если каждая точка пересечения принадлежит ровно двум прямым.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili