
Вопрос задан 16.01.2019 в 02:06.
Предмет Алгебра.
Спрашивает Александрин Богдан.
Постройте график функции


Ответы на вопрос

Отвечает Конысбай Гульбану.
Область определения.
![y= \sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }-1, \\ \frac{ x^{2} -3x+2}{x-1} \geq 0, \\ x-1 \neq 0, \ x \neq 1, \\ x^2-3x+2=0, \ x_1=1, \ x_2=2, \\ (x-1)^2(x-2) \geq 0, \\ x-2 \geq 0, \\ x \geq 2, \\ D_y=[2;+\infty). y= \sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }-1, \\ \frac{ x^{2} -3x+2}{x-1} \geq 0, \\ x-1 \neq 0, \ x \neq 1, \\ x^2-3x+2=0, \ x_1=1, \ x_2=2, \\ (x-1)^2(x-2) \geq 0, \\ x-2 \geq 0, \\ x \geq 2, \\ D_y=[2;+\infty). ](https://tex.z-dn.net/?f=y%3D+%5Csqrt%5B4%5D%7B+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D-1%2C+%5C%5C%0A+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%5Cgeq+0%2C+%5C%5C%0Ax-1+%5Cneq+0%2C+%5C+x+%5Cneq+1%2C+%5C%5C%0Ax%5E2-3x%2B2%3D0%2C+%5C+x_1%3D1%2C+%5C+x_2%3D2%2C+%5C%5C%0A%28x-1%29%5E2%28x-2%29+%5Cgeq+0%2C+%5C%5C%0Ax-2+%5Cgeq+0%2C+%5C%5C%0Ax+%5Cgeq+2%2C+%5C%5C%0AD_y%3D%5B2%3B%2B%5Cinfty%29.%0A)
Область значений.
![y=\sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }-1, \\ y+1=\sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} } \geq 0, \\ y+1 \geq 0, \\ y \geq -1, \\ E_y=[-1;+\infty). y=\sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }-1, \\ y+1=\sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} } \geq 0, \\ y+1 \geq 0, \\ y \geq -1, \\ E_y=[-1;+\infty).](https://tex.z-dn.net/?f=y%3D%5Csqrt%5B4%5D%7B+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D-1%2C+%5C%5C%0Ay%2B1%3D%5Csqrt%5B4%5D%7B+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D+%5Cgeq+0%2C+%5C%5C%0Ay%2B1+%5Cgeq+0%2C+%5C%5C%0Ay+%5Cgeq+-1%2C+%5C%5C%0AE_y%3D%5B-1%3B%2B%5Cinfty%29.)
Функция общего вида, т.е. ни четная ни нечетная.
Нули функции.
![x=0\notin D_y, \\ y=0, \sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }-1=0, \\ \sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }=1, \\ \frac{ x^{2} -3x+2}{x-1}=1, \\ \frac{ x^{2} -3x+2}{x-1}-1=0, \\ \frac{ x^{2} -3x+2-x+1}{x-1}=0, \\ \frac{ x^{2} -4x+3}{x-1}=0, \\ x^2-4x+3=0, \ x_1=1\notin D_y, \ x_2=3,\\ (3;0). x=0\notin D_y, \\ y=0, \sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }-1=0, \\ \sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }=1, \\ \frac{ x^{2} -3x+2}{x-1}=1, \\ \frac{ x^{2} -3x+2}{x-1}-1=0, \\ \frac{ x^{2} -3x+2-x+1}{x-1}=0, \\ \frac{ x^{2} -4x+3}{x-1}=0, \\ x^2-4x+3=0, \ x_1=1\notin D_y, \ x_2=3,\\ (3;0).](https://tex.z-dn.net/?f=x%3D0%5Cnotin+D_y%2C+%5C%5C+y%3D0%2C+%5Csqrt%5B4%5D%7B+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D-1%3D0%2C+%5C%5C+%5Csqrt%5B4%5D%7B+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D%3D1%2C+%5C%5C+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D%3D1%2C+%5C%5C+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D-1%3D0%2C+%5C%5C+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2-x%2B1%7D%7Bx-1%7D%3D0%2C+%5C%5C+%5Cfrac%7B+x%5E%7B2%7D+-4x%2B3%7D%7Bx-1%7D%3D0%2C+%5C%5C+x%5E2-4x%2B3%3D0%2C+%5C+x_1%3D1%5Cnotin+D_y%2C+%5C+x_2%3D3%2C%5C%5C+%283%3B0%29.)
Промежутки знакопостоянства.
![y\gtrless0, \\ \sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }-1\gtrless0, \\ \sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }\gtrless1, \\ \frac{ x^{2} -3x+2}{x-1}\gtrless1, \\ \frac{ x^{2} -3x+2}{x-1}-1\gtrless0, \\ \frac{ x^{2} -4x+3}{x-1}\gtrless0, \\ \frac{(x-1)(x-3)}{x-1}\gtrless0, \\ (x-1)^2(x-3)\gtrless0, \\ x-3\gtrless0, \\ x\gtrless3, \\ 2<x<3, x\in(2;3), y<0, \\ x>3, x\in(3;+\infty), y>0. y\gtrless0, \\ \sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }-1\gtrless0, \\ \sqrt[4]{ \frac{ x^{2} -3x+2}{x-1} }\gtrless1, \\ \frac{ x^{2} -3x+2}{x-1}\gtrless1, \\ \frac{ x^{2} -3x+2}{x-1}-1\gtrless0, \\ \frac{ x^{2} -4x+3}{x-1}\gtrless0, \\ \frac{(x-1)(x-3)}{x-1}\gtrless0, \\ (x-1)^2(x-3)\gtrless0, \\ x-3\gtrless0, \\ x\gtrless3, \\ 2<x<3, x\in(2;3), y<0, \\ x>3, x\in(3;+\infty), y>0.](https://tex.z-dn.net/?f=y%5Cgtrless0%2C+%5C%5C+%5Csqrt%5B4%5D%7B+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D-1%5Cgtrless0%2C+%5C%5C+%5Csqrt%5B4%5D%7B+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D%5Cgtrless1%2C+%5C%5C+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D%5Cgtrless1%2C+%5C%5C+%5Cfrac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D-1%5Cgtrless0%2C+%5C%5C+%5Cfrac%7B+x%5E%7B2%7D+-4x%2B3%7D%7Bx-1%7D%5Cgtrless0%2C+%5C%5C+%5Cfrac%7B%28x-1%29%28x-3%29%7D%7Bx-1%7D%5Cgtrless0%2C+%5C%5C+%28x-1%29%5E2%28x-3%29%5Cgtrless0%2C+%5C%5C+x-3%5Cgtrless0%2C+%5C%5C+x%5Cgtrless3%2C+%5C%5C+2%3Cx%3C3%2C+x%5Cin%282%3B3%29%2C+y%3C0%2C+%5C%5C+x%3E3%2C%C2%A0x%5Cin%283%3B%2B%5Cinfty%29%2C+y%3E0.)
Производные функции.


Критические точки.
![y'=0, \frac{1}{4} ( \frac{x-1}{ x^{2} -3x+2})^{ \frac{3}{4}}=0, \\ \frac{x-1}{ x^{2} -3x+2}=0, \\ x^{2} -3x+2 \neq0,\\ (x-1)(x-2) \neq 0, \\ x \neq 1\notin D_y, \\ x \neq 2; \\ x=2, y= \sqrt[4]{ \frac{ 2^{2} -3\cdot2+2}{2-1} }-1=\sqrt[4]{4 -6+2}-1=\sqrt[4]{0}-1=-1;\\ (2;-1). y'=0, \frac{1}{4} ( \frac{x-1}{ x^{2} -3x+2})^{ \frac{3}{4}}=0, \\ \frac{x-1}{ x^{2} -3x+2}=0, \\ x^{2} -3x+2 \neq0,\\ (x-1)(x-2) \neq 0, \\ x \neq 1\notin D_y, \\ x \neq 2; \\ x=2, y= \sqrt[4]{ \frac{ 2^{2} -3\cdot2+2}{2-1} }-1=\sqrt[4]{4 -6+2}-1=\sqrt[4]{0}-1=-1;\\ (2;-1).](https://tex.z-dn.net/?f=y%27%3D0%2C+%5Cfrac%7B1%7D%7B4%7D+%28+%5Cfrac%7Bx-1%7D%7B+x%5E%7B2%7D+-3x%2B2%7D%29%5E%7B+%5Cfrac%7B3%7D%7B4%7D%7D%3D0%2C+%5C%5C+%5Cfrac%7Bx-1%7D%7B+x%5E%7B2%7D+-3x%2B2%7D%3D0%2C+%5C%5C+x%5E%7B2%7D+-3x%2B2+%5Cneq0%2C%5C%5C+%28x-1%29%28x-2%29+%5Cneq+0%2C+%5C%5C+x+%5Cneq+1%5Cnotin+D_y%2C+%5C%5C+x+%5Cneq+2%3B+%5C%5C+x%3D2%2C+y%3D+%5Csqrt%5B4%5D%7B+%5Cfrac%7B+2%5E%7B2%7D+-3%5Ccdot2%2B2%7D%7B2-1%7D+%7D-1%3D%5Csqrt%5B4%5D%7B4+-6%2B2%7D-1%3D%5Csqrt%5B4%5D%7B0%7D-1%3D-1%3B%5C%5C+%282%3B-1%29.)
Промежутки монотонности.
![y'\gtrless0, \ \frac{1}{4} (\frac{x-1}{ x^{2} -3x+2})^{ \frac{3}{4}}\gtrless0, \\ \frac{1}{4} \sqrt[4]{ (\frac{x-1}{ x^{2} -3x+2})^3} >0, \\ x\in D_y,\ y'>0,\ y\nearrow. y'\gtrless0, \ \frac{1}{4} (\frac{x-1}{ x^{2} -3x+2})^{ \frac{3}{4}}\gtrless0, \\ \frac{1}{4} \sqrt[4]{ (\frac{x-1}{ x^{2} -3x+2})^3} >0, \\ x\in D_y,\ y'>0,\ y\nearrow.](https://tex.z-dn.net/?f=y%27%5Cgtrless0%2C+%5C+%5Cfrac%7B1%7D%7B4%7D+%28%5Cfrac%7Bx-1%7D%7B+x%5E%7B2%7D+-3x%2B2%7D%29%5E%7B+%5Cfrac%7B3%7D%7B4%7D%7D%5Cgtrless0%2C+%5C%5C+%5Cfrac%7B1%7D%7B4%7D+%5Csqrt%5B4%5D%7B+%28%5Cfrac%7Bx-1%7D%7B+x%5E%7B2%7D+-3x%2B2%7D%29%5E3%7D+%3E0%2C+%5C%5C+x%5Cin+D_y%2C%5C+y%27%3E0%2C%5C+y%5Cnearrow.)
Промежутки выпуклости-вогнутости.

Область значений.
Функция общего вида, т.е. ни четная ни нечетная.
Нули функции.
Промежутки знакопостоянства.
Производные функции.
Критические точки.
Промежутки монотонности.
Промежутки выпуклости-вогнутости.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili