Вопрос задан 09.01.2019 в 04:00. Предмет Алгебра. Спрашивает Людович Влада.

На данной окружности постройте точку равноудаленную от двух данных пересекающихся прямых. Сколько

решений может иметь задача? ПОЖАЛУЙСТА ПОМОГИТЕ
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Базарова Дарима.
Допустим,нам даны прямые a и b ,пересекающиеся в некоторой точке,и окружность с центром в точке О,заключённая между ними.
Основываясь на том теореме,что каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон.
Строим биссектрису угла ,образованного прямыми a и b (план построения биссектрисы с помощью циркуля и линейки оставлю в одном из вложений).
Возможен случай,когда биссектриса не пересекает данную окружность,тогда равноудалённых от прямых точек ,лежащих на окружности,нет.(третий чертёж на первой фотографии)
Возможен случай,когда биссектриса касается окружности; в данном случае окружность имеет ОДНУ равноудалённую от прямых точку,поскольку она лежит на биссектрисе угла образованного прямыми.(второй чертёж на первой фотографии; искомая точка жирно выделена)
Возможен случай,когда биссектриса пересекает окружность; в данном случае окружность будет иметь ДВЕ равноудалённые от прямых точки,поскольку они они лежат на биссектрисе угла,образованного прямыми.(первый чертёж на первой фотографии; точки также жирно выделены)
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос