
Вопрос задан 29.12.2018 в 05:50.
Предмет Алгебра.
Спрашивает Трефилова Анастасия.
При каких значениях а,b и с многочлен Р(х)=х^5+ax^3+bx^2+c делится на х+2,а при делении на х^2-1
дает остаток -3х+3?

Ответы на вопрос

Отвечает Талисмахер Влад.
X^5+ax^3+bx^2+c делим x+2
x^5+2x^4 x^4+2x^3+(a-4)x^2+(b-2(a-4))x-2(b-2(a-4))
2x^4+ax^3+bx^2+c
2x^4+4x^3
(a-4)x^3+bx^2+c
(a-4)x^3+2(a-4)x^2
(b-2(a-4))x^2+c
(b-2(a-4))x^2+2(b-2(a-4))x
-2(b-2(a-4))x+c
-2(b-2(a-4))x-2*2(b-2(a-4))
c+2*2(b-2(a-4))
Р(х) делится на х+2 , если c+4(b-2(a-4))=0 или с+4b-8a+32=0
разделим на x^{2}-1
x^5+ax^3+bx^2+c делим x^2-1
x^5-x^3 x^3+(a+1)x
(a+1)x^3+bx+c
(a+1)x^3-(a+1)x
(b+a+1)x+c
дает остаток -3х+3, если b+a+1=-3, и c=3
выразим b
b+a+1=-3 b=-4-a
подставим в первое
3+4(-4-a)-8a+32=0
19-12a=0
a=-19/12
b=-67/12
ответ: -19/12, -67/12, 3
x^5+2x^4 x^4+2x^3+(a-4)x^2+(b-2(a-4))x-2(b-2(a-4))
2x^4+ax^3+bx^2+c
2x^4+4x^3
(a-4)x^3+bx^2+c
(a-4)x^3+2(a-4)x^2
(b-2(a-4))x^2+c
(b-2(a-4))x^2+2(b-2(a-4))x
-2(b-2(a-4))x+c
-2(b-2(a-4))x-2*2(b-2(a-4))
c+2*2(b-2(a-4))
Р(х) делится на х+2 , если c+4(b-2(a-4))=0 или с+4b-8a+32=0
разделим на x^{2}-1
x^5+ax^3+bx^2+c делим x^2-1
x^5-x^3 x^3+(a+1)x
(a+1)x^3+bx+c
(a+1)x^3-(a+1)x
(b+a+1)x+c
дает остаток -3х+3, если b+a+1=-3, и c=3
выразим b
b+a+1=-3 b=-4-a
подставим в первое
3+4(-4-a)-8a+32=0
19-12a=0
a=-19/12
b=-67/12
ответ: -19/12, -67/12, 3


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili