Вопрос задан 26.12.2018 в 08:20. Предмет Алгебра. Спрашивает Сульдина Настя.

Найдите два натуральных числа, если известно, что сумма их квадратов на 16 больше их удвоенного

произведения, а их среднее арифметическое равно 9
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Радилов Анатолий.
А - 1 число;
b - 2 число;
имеем систему:
a^2+b^2=2ab+16;
a+b/2=9;

a^2-2ab+b^2=16;
сворачиваем по формуле; и преобразуем 2 уравнение:
(a-b)^2=16;
a+b=18;
выражаем a:
a=18-b;
подставляем:
(18-b-b)^2=16;
теперь сокращаем на квадрат:
|18-2b|=4;
1) 18-2b=4;
2b=14;
b1=7;
2) 18-2b=-4;
2b=22;
b2=11;
теперь ищем а:
a1=18-7=11;
a2=18-11=7;
Ответ: эти числа 7 и 11
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос